

ACADEMIC LESSON PLAN FOR SESSION - 2023-24 .**Dept. of Electrical Engg****GOVT POLYTECHNIC KANDHAMAL****Name Of the Faculty :- CHINMAYEE PANIGRAHI****ELECTRICAL MEASUREMENT & INSTRUMENTATION**

Course Code: Th.3

Theory : 4 P/W

Total Period s: 75P/ Sem

End Semester Exam : 80 marks

Examination : 3 Hours

Sem : 4TH EE

TOTAL MARKS : 100 Marks

WEEK	PERIOD	TOPIC
1 st	1 st	Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance
	2 nd	Classification of measuring instruments.
	3 rd	Explain Deflecting arrangements in indicating type of instruments.
	4 th	Explain controlling arrangements in indicating type of instruments.
		Explain damping arrangements in indicating type of instruments.
2 nd	1 st	Calibration of instruments.
	2 nd	Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments.
	3 rd	Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments(continue..)
	4 th	Describe Construction, principle of operation, errors, ranges merits and demerits of Permanent Magnet Moving coil type instruments.
		Describe Construction, principle of operation, errors, ranges merits and demerits of Permanent Magnet Moving coil type instruments(continue..)
3 rd	1 st	Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer type instruments
	2 nd	Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer type instruments(continue..)
	3 rd	Describe Construction, principle of operation, errors, ranges merits and demerits of Rectifier type instruments
	4 th	Describe Construction, principle of operation, errors, ranges merits and demerits of Induction type instruments
		Extend the range of instruments by use of shunts resistor
4 th	1 st	Extend the range of instruments by use of Multipliers.
	2 nd	Solve Numerical
	3 rd	Solve Numerical(continue..)
	4 th	Describe Construction, principle of working of Dynamometer type wattmeter.
	5 th	Errors in Dynamometer type wattmeter

5 th	1 st	methods of their Error correction
	2 nd	Discuss L P Ftype Dynamometer wattmeter
	3 rd	Discuss U P F type Dynamometer wattmeter
	4 th	Discuss Induction type watt meters
		Single Phase Induction type Energy meters (introduction)
6 th	1 st	Single Phase Induction type Energy meters – construction & working principle
	2 nd	Single Phase Induction type Energy meters – construction & working principle(continue..)
	3 rd	their compensation and adjustments.
	4 th	Testing of Energy Meters
		Different types of Tachometers(introduction)
7 th	1 st	working principles of Tachometers
	2 nd	Principle of operation and construction of Mechanical Type frequency meters
	3 rd	Principle of operation and construction of Mechanical Type frequency meters(continue...)
	4 th	Principle of operation and construction of Electrical resonance Type frequency meters.
		Principle of operation and construction of Electrical resonance Type frequency meters(continue...)
8 th	1 st	Principle of operation and working of Dynamometer type single phase power factor meters.
	2 nd	Principle of operation and working of Dynamometer type three phase power factor meters
	3 rd	Classification of resistance
	4 th	Measurement of low resistance by potentiometer method
		Measurement of medium resistance by wheat Stone bridge method
9 th	1 st	Measurement of high resistance by loss of charge method
	2 nd	Construction, principle of operations of Megger for measurement of insulation resistance
	3 rd	Construction, principle of operations of Earth tester for earth resistance measurement
	4 th	Construction and principles of Multimeter. (Analog)
	5 th	Construction and principles of Multimeter. (Digital)
10 th	1 st	Measurement of inductance by Maxwell's Bridge method
	2 nd	Measurement of capacitance by Schering Bridge method
	3 rd	Define Transducer, sensing element or detector element and transduction elements
	4 th	Classify transducer. Give examples of various class of transducer, Resistive transducer.
		Linear motion potentiometer
11 th	1 st	angular motion potentiometer
	2 nd	Thermistor and Resistance thermometers
	3 rd	Wire Resistance Strain Gauges ,Inductive Transducer
	4 th	Principle of linear variable differential Transformer(LVDT), Uses of LVDT
		Capacitive Transducer. General principle of capacitive transducer
12 th	1 st	Variable area capacitive transducer, Change in distance between plate capacitive transducer
	2 nd	Piezo electric Transducer(their applications)

	3 rd	Hall Effect Transducer(their applications)
	4 th	Principle of operation of Cathode Ray Tube
	5 th	Principle of operation of Oscilloscope (with help of block diagram)
13 th	1 st	Measurement of DC Voltage & current by CRO
	2 nd	Measurement of AC Voltage, current by CRO.
	3 rd	Measurement of AC phase & frequency BY CRO.
	4 th	Overall Discussion
	5 th	Overall Discussion
14 th	1 st	Overall Discussion
	2 nd	Previous year question Discussion
	3 rd	Tutorial
	4 th	Tutorial
	5 th	Tutorial
15 th	1 st	Tutorial
	2 nd	Tutorial
	3 rd	Tutorial
	4 th	Tutorial
	5 th	Tutorial

HOD in BIT Electrical department

Lectr. In Electrical department

Principal in BIT Polytechnic, BLS