e Mo Mo Mo So Mo Ho Mo Mo Mo Mo Ao Ho Mo fo Mo Ho Mo Mo Mo e Fo e fe o Mo Mo Mo Mo e e o Ho Mo Mo Mo So Mo o Mo Ao fo Mo Mo Mo Ho Mo Mo Mo So Mo o Mo Mo He afe Mo Mo Mo Mo So So o Mo Mo So
3 68 6 6 6 6P 6 6 6 6 6 6 6 6 6 G 6 6 68 4 O 5 6P 6 4 O O O O O 5 €8 5 O O 6 O O O 5 €58 G5 G G 68 G5 G G 68 GF G 4 67 G5 U 6 6P 6P G 4 655 6 4 4 45 O O O

—_ 5t
o @
AR AR

SSS

PN
9 S S5F

BRANCH - CSE
Semester

SSS

=)

)

o -
W OF P UF U U O

o O (@
AT AT

o o
S 5P

.
7

NAME OF FACULTY - SMT RAJSHREE SENAPATI

LABORATORY MANUAL FOR
PYTHON PROGRAMMING LAB

()
=
o
Ld
Ll
=
()
=
Ld
o3
Ld
(*
p—
—
=
(70
oc
Ldd
| =
-
o
=
=
(&
(-
o
=
P
Ld
E
<
[
L
(an]

e o o Mo o Mo Mo fo Mo Ho Mo Ho Mo Mo Ho Mo Se Fo o Mo Mo Mo Mo Mo Mo Mo So Ao Ao Mo Mo Mo So Mo Mo Mo o Ao o o o Fo Mo Mo do Fo Mo Mo de So Ho Mo Mo Mo Mo So Ao Mo Mo So Mo Mo Mo Mo Se So Mo
50 €08 50 €58 €00 O 8 €50 0P 55 5 O €50 5P O 50 O €50 €57 U8 €50 458 5P €00 45 €00 S8 P €00 458 5P €00 450 00 50 50 0 U5 5P 55 450 50 P 50 50 O 5P 58 U5 50 WO 0 €50 O €00 58 5P €56 458 N 00 U 00 58 O O 8 56

SI. Page
No. CONTENT No.
01 | Introduction to python programming. 1-13
02 | To study strings in python 14-15
03 | To study conditional statements in python 16-17
04 | To study loops in python 18-19
05 | To study python arrays, list, tuples, set, dictionary 20-36
06 | To study functions in python 37-39
07 | To study classes in python 40-41
Write instructions to perform each of the steps below
a) Create a string containing at least five words and
store it in a variable.
b) Print out the string.
08 c) Convert the string to a list of words using the 42
string split method.
d) Sort the list into reverse alphabetical order using
some of the list methods (you might need to use
dir(list) or help(list) to find appropriate methods).
e) Print out the sorted, reversed list of words.
09 W_rite a program that determines whether the number is 43
prime.
10 Find all numbers which are multiple of 17, but not the 44
multiple of 5, between 2000 and 25007.
Swap two integer numbers using a temporary variable.
11 | Repeat the exercise using the code format: a, b = b, a. 45
\erify your results in both the cases.
Find the largest of n numbers, using a user defined
12 - 46
function largest().
Write a function my Reverse () which receives a string
13 : x 47
as an input and returns the reverse of the string.
14 | Check if a given string is palindrome or not. 48
15 | Write a program to convert Celsius to Fahrenheit. 49
16 | Find the ASCII value of charades. 50
17 | Write a program for simple calculator. 51

INTRODUCTION TO PYTHON PROGRAMMING.

Theory: - Python is a general-purpose interpreted, interactive, object-oriented, and high-level
programming language. It was created by Guido van Rossum during 1985- 1990. Like Perl,
Python source code is also available under the GNU General Public License (GPL). This
tutorial gives enough understanding on Python programming language.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic
understanding of any of the programming languages is a plus.

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is
designed to be highly readable. It uses English keywords frequently where as other languages
use punctuation, and it has fewer syntactical constructions than other languages.

Python is Interpreted — Python is processed at runtime by the interpreter. You do not
need to compile your program before executing it. This is similar to PERL and PHP.

Python is Interactive — You can actually sit at a Python prompt and interact with the
interpreter directly to write your programs.

Python is Object-Oriented — Python supports Object-Oriented style or technique of
programming that encapsulates code within objects.

Python is a Beginner's Language — Python is a great language for the beginner-level
programmers and supports the development of a wide range of applications from simple
text processing to WWW browsers to games.

History of Python
Python was developed by Guido van Rossum in the late eighties and early nineties at the National
Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,
SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General
Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van
Rossum still holds a vital role in directing its progress.

Python Features

Python's features include —

Easy-to-learn — Python has few keywords, simple structure, and a clearly defined syntax.
This allows the student to pick up the language quickly.

Easy-to-read — Python code is more clearly defined and visible to the eyes.
Easy-to-maintain — Python's source code is fairly easy-to-maintain.

A broad standard library — Python's bulk of the library is very portable and cross-
platformcompatible on UNIX, Windows, and Macintosh.

Interactive Mode — Python has support for an interactive mode which allows interactive
testing and debugging of snippets of code.

Portable — Python can run on a wide variety of hardware platforms and has the same
interface on all platforms.

Extendable — You can add low-level modules to the Python interpreter. These modules
enable programmers to add to or customize their tools to be more efficient.

Databases — Python provides interfaces to all major commercial databases.

GUI Programming — Python supports GUI applications that can be created and ported to
many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and
the X Window system of Unix.

Scalable — Python provides a better structure and support for large programs than shell
scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed
below —

It supports functional and structured programming methods as well as OOP.

It can be used as a scripting language or can be compiled to byte-code for building large
applications.

It provides very high-level dynamic data types and supports dynamic type checking.
It supports automatic garbage collection.

It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 =9. Here, 4 and 5 are called operands and + is called operator.
Python Variables: Declare, Concatenate, Global & Local

What is a Variable in Python?

A Python variable is a reserved memory location to store values. In other words, a variable in a
python program gives data to the computer for processing.

Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple,
Strings, Dictionary, etc. Variables can be declared by any name or even alphabets like a, aa, abc, etc.

How to Declare and use a Variable

Let see an example. We will declare variable "a" and print it.

a=100
printa

Python 1 Example

Declare a variable and initialize it
f=0

print f

re-declaring the variable works
f="guru99'

print

List of some different variable types

x =123 # integer

x =123L # long integer
x=3.14 # double float
x ="hello" # string

x =[0,1,2] # list

x=(0,1,2) # tuple

X = open(‘hello.py’, ‘r’) #file

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of constants
as containers that hold information which cannot be changed later.

Non technically, you can think of constant as a bag to store some books and those books cannotbe

replaced once place inside the bag.

Assigning value to a constant in Python

In Python, constants are usually declared and assigned on a module. Here, the module means a
new file containing variables, functions etc which is imported to main file. Inside the module,
constants are written in all capital letters and underscores separating the words.

Example 3: Declaring and assigning value to a constant

Create a constant.py

1. PI=3.14

2. GRAVITY =
9.8

Create a main.py

1. import constant

2.

3. print(constant.Pl)

4. print(constant. GRAVIT
Y)

When you run the program, the output will be:

3.14
9.8

Types of Operator

Python language supports the following types of operators.

Arithmetic Operators
« Comparison (Relational) Operators
Assignment Operators
Logical Operators
Bitwise Operators
Membership Operators
Identity Operators

——

'

Let us have a look on all operators one by one.

Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20, then —

Operator Descriptio Example
n

+ Addition Adds values on either side of the operator. a+hb
=30

- Subtraction Subtracts right hand operand from left hand operand. a-b=
10

* Multiplies values on either side of the operator a*b=

Multiplication 200

/ Division Divides left hand operand by right hand operand b/la=2

% Modulus Divides left hand operand by right hand operand and returns b%a=0

remainder
** Exponent Performs exponential (power) calculation on operators a**b =10
to the
power
20

4 Floor Division - The division of operands where the result is 9//2 =4

the quotient in which the digits after the decimal point are and

removed. But if one of the operands is negative, the result is 9.0//2.0

floored, i.e., rounded away from zero (towards negative =4.0,

infinity) — 11//13 =
-4, -
11.0/13
=-4.0

Python Comparison Operators

These operators compare the values on either sides of them and decide the relation among them.
They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then —

Operator Description Example
== If the values of two operands are equal, then the condition (a==Db)is
becomes true. not true.

I= If values of two operands are not equal, then condition becomes (a!=b)is

true. true.
<> If values of two operands are not equal, then condition becomes (a<>b)is
true. true. This
is similar
to
1=
operator.
> If the value of left operand is greater than the value of right (a>b)is
operand, then condition becomes true. not true.

If the value of left operand is less than the value of right operand, (a < b)
then condition becomes true. istrue.

If the value of left operand is greater than or equal to the value of (a >= b)
right operand, then condition becomes true. IS not
true.

If the value of left operand is less than or equal to the value ofright (a <= b)
operand, then condition becomes true. istrue.

Python Assignment Operators
Assume variable a holds 10 and variable b holds 20, then —

Operator

+= Add AND

-= Subtract
AND

Description Example

Assigns values from right side operands to left side operand c=a+b
assigns
value of a
+bintoc

It adds right operand to the left operand and assign the c+=ais

result to left operand equivalent
toc=c+
a

It subtracts right operand from the left operand and assign c-=ais
the result to left operand equivalent
toc=c-a

*= It multiplies right operand with the left operand and assignthe

Multiply result to left operand c *= alis
AND equivalent
toc=c*a

/= Divide AND It divides left operand with the right operand and assign the ¢ /= a is

result to left operand equivalent

toc=c/

ac /= ais

equivalent

toc=c/a

%= It takes modulus using two operands and assign the result to ¢ %= a is

Modulus left operand equivalent

AND toc=c%
a

**= Exponent Performs exponential (power) calculation on operators and ¢ **= a is

AND assign value to the left operand equivalent
toc=c**
a

//= Floor It performs floor division on operators and assign value tothe ¢ //= a is

Division left operand equivalent
toc=cl/l
a

Python Bitwise Operators
Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in binary format they will be as follows —a = 0011 1100 b = 0000 1101

a&h = 0000 1100
ajb = 0011 1101 a*b
= 0011 0001

~a =1100 0011
There are following Bitwise operators supported by Python language|

Show Example]

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists inboth ~ (a & b)
operands (means
0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a| b)=61
(means
0011 1101)

A Binary XOR It copies the bit if it is set in one operand but not (a”b)=49
both. (means
0011 0001)

~ Binary Ones It is unary and has the effect of 'flipping' bits. (va)=-61
Complement (means 1100
0011
in2's
complement
form due to
a signed

(. binary
Y\Ilml’\ﬂv‘
l 9 J TTUTTToCT .

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

<< Binary Left Shift The left operands value is moved left by the numberof a<<2 =240

bits specified by the right operand. (means
1111 0000)
>> Binary Right The left operands value is moved right by the a>>2=15
Shift number of bits specified by the right operand. (means
0000 1111)

Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds
10 and variable b holds 20 then

]
Operator Descriptio Example
n
and If both the operands are true then condition becomes true. (a and
Logical b) is
AND true.
or Logical OR If any of the two operands are non-zero then condition (aorb)
becomes true. IS true.

not Used to reverse the logical state of its operand. Not(a
Logical and b) is
NOT false.

Used to reverse the logical state of its operand.

——

10

'

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings, lists, or
tuples. There are two membership operators as explained below —

perator Descriptio Example
n

In Evaluates to true if it finds a variable in the specified sequenceand

false otherwise. in vy,

here in
results in

alifxis
a
member
of
sequence

y.

not in Evaluates to true if it does not finds a variable in the specified x not in
sequence and false otherwise. y, here
not in
results in
alifxis
not a
member
of
sequence

y.

11

——
| —

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity
operators explained below —

Operator Descriptio Example
n
Is Evaluates to true if the variables on either side of the operatorpoint X is y, here is
to the same object and false otherwise. results in 1 if
id(x) equals
id(y).
is not Evaluates to false if the variables on either side of the operator .
. . . X 1S not v,
point to the same object and true otherwise. .
here is not
results in 1
if id(x) is
not equal to
id(y).

12

——
| —

Python Operators Precedence
The following table lists all operators from highest precedence to lowest.

SI.No. Operator & Description
* %k
1 Exponentiation (raise to the power)
~ + -
2
Complement, unary plus and minus (method names for the last two are +@ and -
@)
3 *1%//
Multiply, divide, modulo and floor division
+ -
4 Addition and subtraction
>> <<
5
Right and left bitwise shift
&
6
Bitwise 'AND'
A
7
Bitwise exclusive "OR' and regular "OR'
<=<>>=
8
Comparison operators
<> ===
9
Equality operators
=0p=/=[|= -= += *= **=
10 °
Assignment operators
Is, is not
11
Identity operators
In, notin
12

Membership operators
not. or. and

13

——
| —

TO STUDY STRINGS IN PYTHON

Theory:
String Literals

String literals in python are surrounded by either single quotation marks, or double quotation marks.
'hello' is the same as "hello™.

You can display a string literal with the print() function:

Example

print("Hello")
print('Hello") Assign
String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and the string:
Example

a =
"Hello"
print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:
Example

You can use three double quotes:

a = ""Lorem ipsum dolor sit
amet, consectetur adipiscing
elit,

sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.™" print(a)

Or three single quotes: Example

a = ™Lorem ipsum
dolor sit amet, consectetur
adipiscing elit, sed do
eiusmod tempor incididunt
ut labore et dolore magna
aliqua.™ print(a)

14

——
| —

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes
representingunicode characters.

However, Python does not have a character data type, a single character is simply a string with a length
of 1. Square brackets can be used to access elements of the string.
Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello,
World!"

print(a[1])

Example
Substring. Get the characters from position 2 to position 5 (not included):

b = "Hello,
World!"print(b[2:5])

In-bulit Functions in Python:

Strip():Removes all leading whitespace in string.

len(string):Returns the length of the string

upper():Converts lowercase letters in string to uppercase.

Lower(): Vice versa

split(str="""", num=string.count(str)):Splits string according to delimiter str (space if not

provided)and returns list of substrings; split into at most num substrings if given.

6. replace(old, new [, max]):Replaces all occurrences of old in string with new or at
most maxoccurrences if max given.

7. find(str, beg=0 end=len(string)):Determine if str occurs in string or in a substring

of string ifstarting index beg and ending index end are given returns index if found

and -1 otherwise

i o wnNR

15

——
| —

https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/string_find.htm

TO STUDY CONDITIONAL STATEMENTS INPYTHON

Theory:

Decision making is anticipation of conditions occurring while execution of the program and
specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome.
You need to determine which action to take and which statements to execute if outcome is
TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the
programming languages —

ITf condition IFf condition

is true is false

conditional '
code

Python programming language assumes any non-zero and non-null values as TRUE, and if it
iseither zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements.

Sr.No. Statement &
Description
1 if statements
An if statement consists of a boolean expression followed by one or more
statements.
’ if...else statements
An if statement can be followed by an optional else statement, which executes
when the boolean expression is FALSE.
3 nested if statements

You can use one if or else if statement inside another if or else ifstatement(s).

16

——
| —

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement.

Here is an example of a one-line if clause —
var = 100 if (var == 100) : print "Value of
expression is 100" print "Good bye!"

When the above code is executed, it produces the following result —

Value of expression is 100 Good
bye!

17

——
| —

TO STUDY LOOPS IN PYTHON

Theory:

In general, statements are executed sequentially: The first statement in a function is executed
first, followed by the second, and so on. There may be a situation when you need to execute a
block of code several number of times.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The
following diagram illustrates a loop statement —

Conditional Code

If condition
is true

If condition
is false

Python programming language provides following types of loops to handle looping requirements.

Sr.No. Loop Type &
Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests
the condition before executing the loop body.

for loop
Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

nested loops
You can use one or more loop inside any another while, for or do..while loop.

18

——
| —

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.
Let us go through the loop control statements briefly

Sr.No. Control Statement &
Description

break statement

Terminates the loop statement and transfers execution to the statementimmediately
following the loop.

2 continue statement
Causes the loop to skip the remainder of its body and immediately retest itsconditionprior
to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required syntacticallybut youdo
not want any command or code to execute.

19

——
| —

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

TO STUDY PYTHON ARRAYS, LIST, TUPLES, SET,
DICTIONARY

Theory:
What is an Array?

An array is a special variable, which can hold more than one value at a time. If you have a list of
items (a list of car names, for example), storing the cars in single variables could look like this:

carl = "Ford" car2
= "Volvo" car3
:IIBMWII

However, what if you want to loop through the cars and find a specific one? And what if you had
not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to
an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

x = cars[0]
Example

Modify the value of the first array item:

cars[0] = "Toyota"

20

——
| —

The Length of an Array
Use the len() method to return the length of an array (the number of elements in an array).

Example

Return the number of elements in the cars array:
X = len(cars)

Note: The length of an array is always one more than the highest array index.

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.
Example

Print each item in the cars array:
for x in

cars:

print(x)
Adding Array Elements

You can use the append() method to add an element to an array.

Example
Add one more element to the cars array:
cars.append("Honda")

Removing Array Elements

You can use the pop() method to remove an element from the array.

Example

Delete the second element of the cars array:

cars.pop(1)
You can also use the remove() method to remove an element from the array.

Example

Delete the element that has the value "Volvo":

cars.remove("Volvo")

21

——
| —

Note: The remove() method only removes the first occurrence of the specified value.

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

clear Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list
index() Returns the index of the first element with the specified value

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

22

——
| —

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp

insert() Adds an element at the specified position
pop() Removes the element at the specified position
remove() Removes the first item with the specified value
reverse() Reverses the order of the list
sort() Sorts the list

Python List:

The list is a most versatile datatype available in Python which can be written as a list of
commaseparated values (items) between square brackets. Important thing about a list is that
items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.
For example —

listl = ['physics', 'chemistry', 1997, 2000];
list2=1[1,2,3,4,5]; list3=["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

23

——
| —

https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example —

listl = ['physics’, 'chemistry', 1997, 2000];
list2=11,2,3,4,5,6,7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result —
list1[0]: physics list2[1:5]:

[2,3,4,5]

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the
assignment operator, and you can add to elements in a list with the append() method. For
example —

list = ['physics’, 'chemistry', 1997, 2000];
print "Value available at index 2 : " print
list[2] list[2] = 2001; print "New value

available at index 2 : " print list[2]

Note — append() method is discussed in subsequent section. When

the above code is executed, it produces the following result —

Value available at index 2 :
1997

New value available atindex 2 :
2001

Delete List Elements
To remove a list element, you can use either the del statement if you know exactly which
element(s) you are deleting or the remove() method if you do not know. For example —

24

——
| —

listl = ['physics', 'chemistry', 1997, 2000]; print list1

del list1[2]; print "After deleting value

atindex 2 : " print listl

When the above code is executed, it produces following result —

['physics', 'chemistry’, 1997, 2000] After deleting value at index 2 :
['physics', 'chemistry', 2000]

Note — remove() method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition
here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior
chapter.

Python Expression Results Description
len([1, 2, 3]) 3 Length
[1,2,3]+][4,5,6] [1,2,3,4,5,6] Concatenation
[Hil]* 4 [Hil', Hit', 'Hit, 'Hil'] Repetition
3in[l,2,3] True Membership
for x in [1, 2, 3]: print 123 Iteration

X,

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for
strings.

Assuming following input —

25

——
| —

L =['spam’, 'Spam’, 'SPAMY!]

Python Results

Expression

L[2] SPAM!

L[-2] Spam

L[1:] ['Spam’,
'SPAM!]

Built-in List Functions & Methods
Python includes the following list functions —

Sr.No. Function
Description

cmp(listl, list2)

Compares elements of both lists.

len(list)

Gives the total length of the list.
3 max(list)

Returns item from the list with max value.
4 min(list)

Returns item from the list with min value.
5

list(seq)
Converts atuple into list.

26

——

Description

Offsets start at zero

Negative: count from the
right

Slicing fetches sections

with

'

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm

Python includes following list methods

Sr.No. Methods with
Description

1 list.append(obj)

Appends object obj to list

list.count(obj)

Returns count of how many times obj occurs in list
3 :

list.extend(seq)

Appends the contents of seq to list
4 . .

list.index(obj)

Returns the lowest index in list that obj appears
5 . : i

list.insert(index, obj)

Inserts object obj into list at offset index
6 : -

list.pop(obj=list[-1])

Removes and returns last object or obj from list
7 . .

list.remove(obj)

Removes object obj from list
8 :

list.reverse()

Reverses objects of list in place
9

list.sort([func])
Sorts objects of list, use compare func if given

——

27

'

https://www.tutorialspoint.com/python/list_append.htm
https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

Python Tuple:

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use
parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put
these comma-separated values between parentheses also. For example —

tupl = ("physics', 'chemistry', 1997, 2000);
tupz = (1' 2’ 3, 4, 5)’, tup3 - n II' llbll’ |lc|l’ |ld|l;

The empty tuple is written as two parentheses containing nothing —
tupl = ();

To write a tuple containing a single value you have to include a comma, even though there is only
one value —

tupl =(50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.
Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example —

tupl = ('physics', ‘chemistry', 1997, 2000); tup2=(1, 2, 3,4, 5,6, 7); print
"tupl[0]: ", tupl[0]; print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result —

tup1[0]: physics tup2[1:5]:
[2,3,4,5]

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple elements.

You are able to take portions of existing tuples to create new tuples as the following example
demonstrates —

28

——
| —

tupl = (12, 34.56); tup2

= (‘abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 =tupl + tup2; print

tup3;

When the above code is executed, it produces the following result —

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements
Removing individual tuple elements is not possible. There is, of course, nothing wrong with
putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example —

tup = ('physics', 'chemistry', 1997, 2000); print tup; del tup; print "After
deleting tup : "; print tup;

This produces the following result. Note an exception raised, this is because after del tup tuple
does not exist any more —

('physics', 'chemistry', 1997, 2000) After
deleting tup :

Traceback (most recent call last): File
"test.py", line 9, in <module> print
tup;

NameError: name 'tup' is not defined

29

——
| —

Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean concatenation and
repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior
chapter —

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1,2,3)+(4,5,6) 1,2,3,4,5,6) Concatenation

(Hiv)*4 (Hiv, CHiv, CHit, Repetition
'Hil")

3in(4,2,3) True Membership

for x in (1, 2, 3): print 123 Iteration

X,

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for
strings. Assuming following input —

L= ('spam’, 'Spam’, 'SPAM!')

Python Results Description
Expression
L[2] 'SPAMY!' Offsets start at zero
(]
L)

L[-2] ‘Spam' Negative: count from the
right

L[1:] ['Spam’, 'SPAM!] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,
brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short
examples —

print 'abc’, -4.24e93, 18+6.6j, 'xyz';

X, y=1,2; print "Valueof x,y: ",

X,Y;

When the above code is executed, it produces the following result —

abc -4.24e+93 (18+6.6j) xyz Value
ofx,y:12

Built-in Tuple Functions
Python includes the following tuple functions —

Sr.No. Function with
Description

cmp(tuplel, tuple2)

Compares elements of both tuples.

len(tuple)
Gives the total length of the tuple.

31

——
| —

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm

max(tuple)
Returns item from the tuple with max value.

min(tuple)
Returns item from the tuple with min value.

tuple(seq)
Converts a list into tuple.

Python Sets:

A set is a collection which is unordered and unindexed. In Python sets are written with curly
brackets.

Example

Create a Set:

thisset = {"apple", "banana", "cherry"}
print(thisset)

Note: Sets are unordered, so the items will appear in a random order.
Access Items

You cannot access items in a set by referring to an index, since sets are unordered the items hasno
index.

But you can loop through the set items usinga for loop, or ask if a specified value is present in a
set, by using thein keyword.

Example
Loop through the set, and print the values:
thisset = {"apple"”, "banana", "cherry"}

for x in thisset:
print(x)

32

——
| —

https://www.tutorialspoint.com/python/tuple_max.htm
https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

Example

Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}
print("banana™ in thisset)

Change Items

Once a set is created, you cannot change its items, but you can add new items.

Add Items
To add one item to a set use the add() method.

To add more than one item to a set use the update() method.

Example

Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}
thisset.add(""orange™)

print(thisset)

Example

Add multiple items to a set, using the update() method:
thisset = {"apple"”, "banana", "cherry"}

thisset.update(["orange”, "mango”, "grapes"])

print(thisset)

33

——
| —

Get the Length of a Set

To determine how many items a set has, use the len() method.

Example

Get the number of items in a set:
thisset = {"apple", "banana", "cherry"}
print(len(thisset)

Remove Item

To remove an item in a set, use the remove(), or the discard() method.
Example

Remove "banana" by using the remove() method:

thisset = {"apple", "banana”, "cherry"}

thisset.remove("banana™) print(thisset)

Note: If the item to remove does not exist, remove() will raise an error.
Example

Remove "banana" by using the discard() method:

thisset = {"apple", "banana”, "cherry"}

thisset.discard("banana™)

print(thisset)

Note: If the item to remove does not exist, discard() will NOT raise an error.

34

——
| —

The return value of the pop() method is the removed item.

Example

Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}
x = thisset.pop()
print(x) print(thisset)

Note: Sets are unordered, so when using the pop() method, you will not know which item that
gets removed.

Example
The clear() method empties the set:
thisset = {"apple", "banana”, “"cherry"}

thisset.clear()

print(thisset)

Example

The del keyword will delete the set completely:
thisset = {"apple", "banana”, “cherry"}

del thisset

print(thisset)

35

——
| —

Dictionary

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries
are written with curly brackets, and they have keys and values.

Example

Create and print a dictionary:

thisdict = {
"brand": "Ford",
"model™: "Mustang",
"year": 1964

}

print(thisdict)

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square brackets:
Example

Get the value of the "model" key:

x = thisdict["model"]

There is also a method called get() that will give you the same result:
Example

Get the value of the "model" key:

x = thisdict.get("model")

36

——
| —

TO STUDY FUNCTIONS IN PYTHON

Theory:

A function is a block of code which only runs when it is called. You can pass data, known as
parameters, into a function. A function can return data as a result.

Creating a Function
In Python a function is defined using the def keyword:

Example

my_function(): print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function(): print("Hello from a function™) my_function()

Parameters

Information can be passed to functions as parameter. Parameters are specified after the function
name, inside the parentheses. You can add as many parameters as you want, just separate them
with a comma.The following example has a function with one parameter (fname). When the

function is called, we pass along a first name, which is used inside the function to print the full
name:

Example
def my_function(fname): print(fname + " Refsnes")

my_function(""Emil*") my_function(**Tobias"")
my_function(*'Linus'") Default Parameter

37

——
| —

Value

The following example shows how to use a default parameter value. If we call the function
without parameter, it uses the default value:

Example

def my_function(country = ""Norway""):
print("1 am from " + country)

my_function("Sweden")
my_function("India™)

my_function()
my_function("Brazil™)

Passing a List as a Parameter

You can send any data types of parameter to a function (string, number, list, dictionary etc.), andit
will be treated as the same data type inside the function. E.g. if you send a List as a parameter, it
will still be a List when it reaches the function:

Example

def my_function(food): for x in food:
print(x)

fruits = ["apple”, "banana”, "cherry"]
my_function(fruits)

Return Values

To let a function return a value, use the return statement:

Example

def my_function(x):
return5* x

print(my_function(3)) print(my_function(5))
print(my_function(9)) Recursion

38

——
| —

Python also accepts function recursion, which means a defined function can call itself. Recursion
iIs a common mathematical and programming concept. It means that a function calls itself. This
has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a
function which never terminates, or one that uses excess amounts of memory or processor power.
However, when written correctly recursion can be a very efficient and mathematicallyelegant
approach to programming.

In this example, tri_recursion() is a function that we have defined to call itself (“recurse™). We use
the k variable as the data, which decrements-1) every time we recurse. The recursion ends when

the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find
out is by testing and modifying it.

Example

Recursion Example

def tri_recursion(k):

if(k>0):
result = k+tri_recursion(k-
1)print(result)

else: result

=0

return result

print("\n\nRecursion Example Results") tri_recursion(6)

39

——
| —

TO STUDY CLASSES INPYTHON

Theory:
Python Classes/Objects

Python is an object oriented programming language.
Almost everything in Python is an object, with its properties and methods. A
Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class
To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:
X=95

Create Object

Now we can use the class named myClass to create objects:

Example

Create an object named p1, and print the value of x:

pl = MyClass()
print(pl.x)

The __init__() Function

The examples above are classes and objects in their simplest form, and are not really useful in
real life applications.

To understand the meaning of classes we have to understand the built-in __init__ () function.

All classes have a function called__init (), which is always executed when the class is being
initiated.

40

——
| —

Use the___init () function to assign values to object properties, or other operations that are
necessary to do when the object is being created:

Example

Create a class named Person, use the __init_() function to assign values for name and age:
class Person:
def___init (self, name, age):
self.name = name
self.age = age
pl = Person("John", 36)

print(pl.name) print(pl.age)

Note: The _init function is called automatically every time the class is being used to create
Q

a new object.

41

——
| —

Experiment 1:
Write instructions to perform each of the steps below
(a) Create a string containing at least five words and store it in a variable.

CODE-
name="Hello my name is Akash Ghadai"

(b) Print out the string.

CODE-
print(name)

OUTPUT-
Hello my name is Akash Ghadai

(c) Convert the string to a list of words using the string split method.

CODE-
x=name.split()

(d) Sort the list into reverse alphabetical order using some of the list methods (you might need to use
dir(list) or help(list) to find appropriate methods).

CODE-
x.reverse()

(e) Print out the sorted, reversed list of words.

CODE-
print(x)

OUTPUT-
[Ghadai', 'Akash’, 'is', 'name’, 'my', 'Hello']

——

42

'

Experiment 2:

Write a program that determines whether the number is prime.

CODE-

num=int(input("Enter a number."))

if num % 2 ==0:

print("{} is not prime number".format(num))
else:

print("{} is a prime number.".format(num))

OUTPUT-

Enter a number.29
29 is a prime number.

43

——
| —

Experiment 3:
Find all numbers which are multiple of 17, but not the multiple of 5, between 2000 and 25007.

CODE-

for num in range(2000,2501):

if(num % 17==0) and (num % 5!=0):
print("",num)

OUTPUT-
2006
2023
2057
2074
2091
2108
2142
2159
2176
2193
2227
2244
2261
2278
2312
2329
2346
2363
2397
2414
2431
2448
2482
2499

44

——
| —

Experiment 4:

Swap two integer numbers using a temporary variable. Repeat the exercise using the code
format: a, b = b, a. Verify your results in both the cases.

CODE-

a=20

b=30
print("a={}".format(a))
print("b={}".format(b))
a=a"b

b=b"a

a=a"b
print("a={}".format(a))
print("b={}".format(b))

OUTPUT-
a=20
b=30
a=30
b=20

——

45

'

Experiment 5:

Find the largest of n numbers, using a user defined function largest().

CODE-

def largest(num1,num2):

if numl > num2 :

print("{} is largest number".format(num1))
else:

print("{} is larger number".format(num2))
numl1=int(input("Enter num1 value"))
num2=int(input("Enter num2 value"))
largest(numl1,num2)

OUTPUT-

Enter num1 value20
Enter num2 value30
30 is larger number

46

——
| —

Experiment 6:

Write a function my Reverse () which receives a string as an input and returns the reverse
of the string.

CODE-

def reverse(user_input):
reverse_string=user_input[::-1]
return reverse_string
user_input=input("Enter your name")
final=reverse(user_input)

print(final)

OUTPUT-

Enter your nameAkash
hsakA

47

——
| —

Experiment 7:

Check if a given string is palindrome or not.

CODE-

def ispalindrome(string):

if(string == string[::-1]):

return "The string is a palindrome”
else:

return"The string is not palindrome”
string=input("Enter a string : ")
print(ispalindrome(string))

OUTPUT-
Enter a string : wow
The string is a palindrome

——

48

'

Experiment 8:

WAP to convert Celsius to Fahrenheit.

CODE-

celsius=int(input("Enter the temperature in celsius : "))
fahrenheit=(1.8 * celsius)+32

print("Temperature in fahrenheit: ",fahrenheit)

OUTPUT-

Enter the temperature in celsius : 10
Temperature in fahrenheit: 50.0

49

——

'

Experiment 9:

Find the ASCII value of charades.

CODE-
chr=input("Please enter a character : ")
print("The ASCII value of "+chr+" is",ord(chr))

OUTPUT-
Please enter a character : z
The ASCII value of z is 122

——

50

'

EXPERIMENT 10:
WAP for simple calculator.

CODE-
numl=int(input("Enter num1 value : "))
num2=int(input("Enter num2 value : "))
print("Choose one™)
operator=int(input("1 = +\n2 = *\n3 = -\n4 = /\n""))
if operator == 1.
result=numl+num?2

print("{} + {} = {}".format(hum1,num2,result))
elif operator == 2:

result=num1*+num2

print("{} * {3} = {}".format(num1,num2,result))
elif operator == 3:

result=num1-num2

print("{} - {} = {}".format(num1,num2,result))
elif operator == 4:

result=num1/num2

print("{} / {} = {}".format(num1,num2,result))

OUTPUT-

Enter num1 value : 20
Enter num2 value : 30
Choose one

1=+

2="*

/

NN B W

0 * 30 =600

51

——

'

