

BRANCH – CSE

Sl.

No.
CONTENT

Page

No.

01 Introduction to python programming. 1-13

02 To study strings in python 14-15

03 To study conditional statements in python 16-17

04 To study loops in python 18-19

05 To study python arrays, list, tuples, set, dictionary 20-36

06 To study functions in python 37-39

07 To study classes in python 40-41

08

Write instructions to perform each of the steps below

a) Create a string containing at least five words and

store it in a variable.

b) Print out the string.

c) Convert the string to a list of words using the

string split method.

d) Sort the list into reverse alphabetical order using

some of the list methods (you might need to use

dir(list) or help(list) to find appropriate methods).

e) Print out the sorted, reversed list of words.

42

09
Write a program that determines whether the number is

prime.
43

10
Find all numbers which are multiple of 17, but not the

multiple of 5, between 2000 and 2500?.
44

11

Swap two integer numbers using a temporary variable.

Repeat the exercise using the code format: a, b = b, a.

Verify your results in both the cases.

45

12
Find the largest of n numbers, using a user defined

function largest().
46

13
Write a function my Reverse () which receives a string

as an input and returns the reverse of the string.
47

14 Check if a given string is palindrome or not. 48

15 Write a program to convert Celsius to Fahrenheit. 49

16 Find the ASCII value of charades. 50

17 Write a program for simple calculator. 51

1

INTRODUCTION TO PYTHON PROGRAMMING.

Theory: - Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language. It was created by Guido van Rossum during 1985- 1990. Like Perl,

Python source code is also available under the GNU General Public License (GPL). This

tutorial gives enough understanding on Python programming language.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic

understanding of any of the programming languages is a plus.

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is

designed to be highly readable. It uses English keywords frequently where as other languages

use punctuation, and it has fewer syntactical constructions than other languages.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

• Python is Interactive − You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

• Python is Object-Oriented − Python supports Object-Oriented style or technique of

programming that encapsulates code within objects.

• Python is a Beginner's Language − Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the National

Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van

Rossum still holds a vital role in directing its progress.

2

Python Features

Python's features include −

• Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined and visible to the eyes.

• Easy-to-maintain − Python's source code is fairly easy-to-maintain.

• A broad standard library − Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.

• Portable − Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

• Extendable − You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.

• Databases − Python provides interfaces to all major commercial databases.

• GUI Programming − Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and

the X Window system of Unix.

• Scalable − Python provides a better structure and support for large programs than shell

scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed

below −

• It supports functional and structured programming methods as well as OOP.

• It can be used as a scripting language or can be compiled to byte-code for building large

applications.

• It provides very high-level dynamic data types and supports dynamic type checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

3

a=100
print a

Declare a variable and initialize it
f = 0

print f
re-declaring the variable works
f = 'guru99'
print f

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Python Variables: Declare, Concatenate, Global & Local

What is a Variable in Python?

A Python variable is a reserved memory location to store values. In other words, a variable in a

python program gives data to the computer for processing.

Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple,

Strings, Dictionary, etc. Variables can be declared by any name or even alphabets like a, aa, abc, etc.

How to Declare and use a Variable

Let see an example. We will declare variable "a" and print it.

Python 1 Example

List of some different variable types

x = 123 # integer

x = 123L # long integer

x = 3.14 # double float

x = "hello" # string

x = [0,1,2] # list

x = (0,1,2) # tuple

x = open(‘hello.py’, ‘r’) # file

4

3.14

9.8

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of constants

as containers that hold information which cannot be changed later.

Non technically, you can think of constant as a bag to store some books and those books cannot be

replaced once place inside the bag.

Assigning value to a constant in Python

In Python, constants are usually declared and assigned on a module. Here, the module means a

new file containing variables, functions etc which is imported to main file. Inside the module,

constants are written in all capital letters and underscores separating the words.

Example 3: Declaring and assigning value to a constant

Create a constant.py

1.

2.

PI = 3.14

GRAVITY =

9.8

Create a main.py

1.

2.

3.

4.

import constant

print(constant.PI)

print(constant.GRAVIT

Y)

When you run the program, the output will be:

Types of Operator

Python language supports the following types of operators.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

5

Let us have a look on all operators one by one.

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Descriptio

n

Example

+ Addition Adds values on either side of the operator. a + b

= 30

- Subtraction Subtracts right hand operand from left hand operand. a – b =

10

*

Multiplication

Multiplies values on either side of the operator a * b =

200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10

to the

power

20

//

Floor Division - The division of operands where the result is

the quotient in which the digits after the decimal point are

9//2 = 4

and

6

removed. But if one of the operands is negative, the result is

floored, i.e., rounded away from zero (towards negative

infinity) −

9.0//2.0

= 4.0,

11//3 =

-4, -

11.0//3

= -4.0

Python Comparison Operators

These operators compare the values on either sides of them and decide the relation among them.

They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

== If the values of two operands are equal, then the condition

becomes true.

(a == b) is

not true.

!= If values of two operands are not equal, then condition becomes

true.

(a != b) is

true.

<> If values of two operands are not equal, then condition becomes

true.

(a <> b) is

true. This

is similar

to

!=

operator.

> If the value of left operand is greater than the value of right

operand, then condition becomes true.

(a > b) is

not true.

7

< If the value of left operand is less than the value of right operand,

then condition becomes true.

(a < b)

is true.

>= If the value of left operand is greater than or equal to the value of

right operand, then condition becomes true.

(a >= b)

is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b)

is true.

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns

value of a

+ b into c

+= Add AND It adds right operand to the left operand and assign the

result to left operand

c += a is

equivalent

to c = c +

a

-= Subtract

AND

It subtracts right operand from the left operand and assign

the result to left operand

c -= a is

equivalent

to c = c - a

8

*=

Multiply

AND

It multiplies right operand with the left operand and assign the

result to left operand

c *= a is

equivalent

to c = c * a

/= Divide AND It divides left operand with the right operand and assign the

result to left operand

c /= a is

equivalent

to c = c /

ac /= a is

equivalent

to c = c / a

%=

Modulus

AND

It takes modulus using two operands and assign the result to

left operand

c %= a is

equivalent

to c = c %

a

**= Exponent

AND

Performs exponential (power) calculation on operators and

assign value to the left operand

c **= a is

equivalent

to c = c **

a

//= Floor

Division

It performs floor division on operators and assign value to the

left operand

c //= a is

equivalent

to c = c //

a

9

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in binary format they will be as follows − a = 0011 1100 b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101 a^b

= 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language [

Show Example]

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both

operands

(a & b)

(means

0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61

(means

0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but not

both.

(a ^ b) = 49

(means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping' bits. (~a) = -61

(means 1100

0011

in 2's

complement

form due to

a signed

binary

number.

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

10

<< Binary Left Shift The left operands value is moved left by the number of

bits specified by the right operand.

a << 2 = 240

(means

1111 0000)

>> Binary Right

Shift

The left operands value is moved right by the

number of bits specified by the right operand.

a >> 2 = 15

(means

0000 1111)

Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds

10 and variable b holds 20 then

]

Operator Descriptio

n

Example

and

Logical

AND

If both the operands are true then condition becomes true. (a and

b) is

true.

or Logical OR If any of the two operands are non-zero then condition

becomes true.

(a or b)

is true.

not

Logical

NOT

Used to reverse the logical state of its operand. Not(a

and b) is

false.

Used to reverse the logical state of its operand.

11

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings, lists, or

tuples. There are two membership operators as explained below −

perator Descriptio

n

Example

In Evaluates to true if it finds a variable in the specified sequence and

false otherwise.

x in y,

here in

results in

a 1 if x is

a

member

of

sequence

y.

not in Evaluates to true if it does not finds a variable in the specified

sequence and false otherwise.

x not in

y, here

not in

results in

a 1 if x is

not a

member

of

sequence

y.

12

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity

operators explained below −

Operator Descriptio

n

Example

Is Evaluates to true if the variables on either side of the operator point

to the same object and false otherwise.

x is y, here is

results in 1 if

id(x) equals

id(y).

is not Evaluates to false if the variables on either side of the operator

point to the same object and true otherwise.

x is not y,

here is not

results in 1

if id(x) is

not equal to

id(y).

13

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

Sl.No. Operator & Description

1
**
Exponentiation (raise to the power)

2
~ + -

Complement, unary plus and minus (method names for the last two are +@ and -

@)

3
* / % //

Multiply, divide, modulo and floor division

4

+ -

Addition and subtraction

5
>> <<

Right and left bitwise shift

6
&

Bitwise 'AND'

7
^ |

Bitwise exclusive `OR' and regular `OR'

8
<= < > >=

Comparison operators

9
<> == !=

Equality operators

10
= %= /= //= -= += *= **=

Assignment operators

11
Is, is not

Identity operators

12
In, not in

Membership operators

13
not, or, and

Logical operators

14

Example

Example

You can use three double quotes:

TO STUDY STRINGS IN PYTHON

Theory:

String Literals

String literals in python are surrounded by either single quotation marks, or double quotation marks.

is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")

print('Hello') Assign

String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and the string:

a =

"Hello"

print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

a = """Lorem ipsum dolor sit

amet, consectetur adipiscing

elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.""" print(a)

Or three single quotes: Example

a = '''Lorem ipsum

dolor sit amet, consectetur

adipiscing elit, sed do

eiusmod tempor incididunt

ut labore et dolore magna

aliqua.''' print(a)

'hello'

15

Example

Get the character at position 1 (remember that the first character has the position 0):

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes

representing unicode characters.

However, Python does not have a character data type, a single character is simply a string with a length

of 1. Square brackets can be used to access elements of the string.

a = "Hello,

World!"

print(a[1])

Example

Substring. Get the characters from position 2 to position 5 (not included):

b = "Hello,

World!" print(b[2:5])

In-bulit Functions in Python:

1. Strip():Removes all leading whitespace in string.

2. len(string):Returns the length of the string

3. upper():Converts lowercase letters in string to uppercase.

4. Lower(): Vice versa

5. split(str="", num=string.count(str)):Splits string according to delimiter str (space if not

provided) and returns list of substrings; split into at most num substrings if given.

6. replace(old, new [, max]):Replaces all occurrences of old in string with new or at

most max occurrences if max given.

7. find(str, beg=0 end=len(string)):Determine if str occurs in string or in a substring

of string if starting index beg and ending index end are given returns index if found

and -1 otherwise

https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/string_find.htm

16

TO STUDY CONDITIONAL STATEMENTS IN PYTHON

Theory:

Decision making is anticipation of conditions occurring while execution of the program and

specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome.

You need to determine which action to take and which statements to execute if outcome is

TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the

programming languages −

Python programming language assumes any non-zero and non-null values as TRUE, and if it

is either zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements.

Sr.No. Statement &

Description

1
if statements

An if statement consists of a boolean expression followed by one or more

statements.

2
if...else statements

An if statement can be followed by an optional else statement, which executes

when the boolean expression is FALSE.

3
nested if statements

You can use one if or else if statement inside another if or else ifstatement(s).

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

17

var = 100 if (var == 100) : print "Value of

expression is 100" print "Good bye!"

Value of expression is 100 Good

bye!

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement.

Here is an example of a one-line if clause −

When the above code is executed, it produces the following result −

18

TO STUDY LOOPS IN PYTHON

Theory:

In general, statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on. There may be a situation when you need to execute a

block of code several number of times.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The

following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle looping requirements.

Sr.No. Loop Type &

Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests

the condition before executing the loop body.

2
for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3
nested loops

You can use one or more loop inside any another while, for or do..while loop.

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

19

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement &

Description

1

break statement

Terminates the loop statement and transfers execution to the statementimmediately

following the loop.

2

continue statement

Causes the loop to skip the remainder of its body and immediately retest itscondition prior

to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required syntacticallybut you do

not want any command or code to execute.

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

20

Example

Modify the value of the first array item:

Example

Get the value of the first array item:

TO STUDY PYTHON ARRAYS, LIST, TUPLES, SET,

DICTIONARY

 Theory:

What is an Array?

An array is a special variable, which can hold more than one value at a time. If you have a list of

items (a list of car names, for example), storing the cars in single variables could look like this:

car1 = "Ford" car2

= "Volvo" car3

= "BMW"

However, what if you want to loop through the cars and find a specific one? And what if you had

not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to

an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

x = cars[0]

cars[0] = "Toyota"

21

Note: The length of an array is always one more than the highest array index.

Example

Return the number of elements in the cars array:

Example

Print each item in the cars array:

Example

Add one more element to the cars array:

Example

Delete the second element of the cars array:

Example

Delete the element that has the value "Volvo":

The Length of an Array

Use the len() method to return the length of an array (the number of elements in an array).

x = len(cars)

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.

for x in

cars:

print(x)

Adding Array Elements

You can use the append() method to add an element to an array.

cars.append("Honda")

Removing Array Elements

You can use the pop() method to remove an element from the array.

cars.pop(1)

You can also use the remove() method to remove an element from the array.

cars.remove("Volvo")

22

Note: The remove() method only removes the first occurrence of the specified value.

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method

Description

append()

Adds an element at the end of the list

clear()

Removes all the elements from the list

copy()

Returns a copy of the list

count()

Returns the number of elements with the specified value

extend()

Add the elements of a list (or any iterable), to the end of the current list

index()

Returns the index of the first element with the specified value

 Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp

23

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5]; list3 = ["a", "b", "c", "d"]

insert()

Adds an element at the specified position

pop()

Removes the element at the specified position

remove()

Removes the first item with the specified value

reverse()

Reverses the order of the list

sort()

Sorts the list

Python List:

The list is a most versatile datatype available in Python which can be written as a list of

commaseparated values (items) between square brackets. Important thing about a list is that

items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.

For example −

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

24

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

list1 = ['physics', 'chemistry', 1997, 2000];

list1[0]: physics list2[1:5]:

[2, 3, 4, 5]

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : " print

list[2] list[2] = 2001; print "New value

available at index 2 : " print list[2]

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the

assignment operator, and you can add to elements in a list with the append() method. For

example −

Note − append() method is discussed in subsequent section. When

the above code is executed, it produces the following result −

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know. For example −

Value available at index 2 :

1997

New value available at index 2 :

2001

25

['physics', 'chemistry', 1997, 2000] After deleting value at index 2 :

['physics', 'chemistry', 2000]

When the above code is executed, it produces following result −

Note − remove() method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior

chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print

x,

1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input −

del list1[2]; print "After deleting value

at index 2 : " print list1

list1 = ['physics', 'chemistry', 1997, 2000]; print list1

26

L = ['spam', 'Spam', 'SPAM!']

Python

Expression

Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the

right

L[1:] ['Spam',

'SPAM!']

Slicing fetches sections

Built-in List Functions & Methods

Python includes the following list functions −

Sr.No. Function with

Description

1

cmp(list1, list2)

Compares elements of both lists.

2

len(list)

Gives the total length of the list.

3

max(list)

Returns item from the list with max value.

4

min(list)

Returns item from the list with min value.

5

list(seq)

Converts a tuple into list.

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm

27

Python includes following list methods

Sr.No. Methods with

Description

1 list.append(obj)

Appends object obj to list

2

list.count(obj)

Returns count of how many times obj occurs in list

3

list.extend(seq)

Appends the contents of seq to list

4

list.index(obj)

Returns the lowest index in list that obj appears

5

list.insert(index, obj)

Inserts object obj into list at offset index

6

list.pop(obj=list[-1])

Removes and returns last object or obj from list

7

list.remove(obj)

Removes object obj from list

8

list.reverse()

Reverses objects of list in place

9

list.sort([func])

Sorts objects of list, use compare func if given

https://www.tutorialspoint.com/python/list_append.htm
https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

28

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5); tup3 = "a", "b", "c", "d";

tup1 = (50,);

tup1 = ('physics', 'chemistry', 1997, 2000); tup2 = (1, 2, 3, 4, 5, 6, 7); print

"tup1[0]: ", tup1[0]; print "tup2[1:5]: ", tup2[1:5];

tup1[0]: physics tup2[1:5]:

[2, 3, 4, 5]

Python Tuple:

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put

these comma-separated values between parentheses also. For example −

The empty tuple is written as two parentheses containing nothing −

To write a tuple containing a single value you have to include a comma, even though there is only

one value −

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple elements.

You are able to take portions of existing tuples to create new tuples as the following example

demonstrates −

tup1 = ();

29

(12, 34.56, 'abc', 'xyz')

tup = ('physics', 'chemistry', 1997, 2000); print tup; del tup; print "After

deleting tup : "; print tup;

('physics', 'chemistry', 1997, 2000) After

deleting tup :

Traceback (most recent call last): File
"test.py", line 9, in <module> print

tup;

NameError: name 'tup' is not defined

When the above code is executed, it produces the following result −

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

This produces the following result. Note an exception raised, this is because after del tup tuple

does not exist any more −

tup3 = tup1 + tup2; print

tup3;

So let's create a new tuple as follows

Following action is not valid for tuples

tup1[0] = 100;

tup1 = (12, 34.56); tup2

= ('abc', 'xyz');

30

L = ('spam', 'Spam', 'SPAM!')

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior

chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!',

'Hi!')

Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print

x,

1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for

strings. Assuming following input −

Python

Expression

Results Description

L[2] 'SPAM!' Offsets start at zero

31

abc -4.24e+93 (18+6.6j) xyz Value

of x , y : 1 2

L[-2] 'Spam' Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples −

When the above code is executed, it produces the following result −

Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function with

Description

1

cmp(tuple1, tuple2)

Compares elements of both tuples.

2

len(tuple)

Gives the total length of the tuple.

print 'abc', -4.24e93, 18+6.6j, 'xyz';

x, y = 1, 2; print "Value of x , y : ",

x,y;

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm

32

Note: Sets are unordered, so the items will appear in a random order.

3

max(tuple)

Returns item from the tuple with max value.

4

min(tuple)

Returns item from the tuple with min value.

5

tuple(seq)

Converts a list into tuple.

Python Sets:

A set is a collection which is unordered and unindexed. In Python sets are written with curly

brackets.

thisset = {"apple", "banana", "cherry"}

print(thisset)

Access Items

You cannot access items in a set by referring to an index, since sets are unordered the items has no

index.

But you can loop through the set items using a for loop, or ask if a specified value is present in a

set, by using thein keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Example

Create a Set:

https://www.tutorialspoint.com/python/tuple_max.htm
https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

33

Example

Add multiple items to a set, using the update() method:

Example

Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Change Items

Once a set is created, you cannot change its items, but you can add new items.

Add Items

To add one item to a set use the add() method.

To add more than one item to a set use the update() method.

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

thisset = {"apple", "banana", "cherry"}

thisset.update(["orange", "mango", "grapes"])

print(thisset)

Example

Check if "banana" is present in the set:

34

Example

Remove "banana" by using the discard() method:

Note: If the item to remove does not exist, remove() will raise an error.

Note: If the item to remove does not exist, discard() will NOT raise an error.

Example

Get the number of items in a set:

Example

Remove "banana" by using the remove() method:

Get the Length of a Set

To determine how many items a set has, use the len() method.

thisset = {"apple", "banana", "cherry"}

print(len(thisset)

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana") print(thisset)

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

35

Example

The del keyword will delete the set completely:

Example

Remove the last item by using the pop() method:

The return value of the pop() method is the removed item.

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x) print(thisset)

Note: Sets are unordered, so when using the

gets removed.

pop() method, you will not know which item that

Example

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

36

Example

Get the value of the "model" key:

Example

Get the value of the "model" key:

Dictionary

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries

are written with curly brackets, and they have keys and values.

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

print(thisdict)

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square brackets:

x = thisdict["model"]

There is also a method called get() that will give you the same result:

x = thisdict.get("model")

Example

Create and print a dictionary:

37

TO STUDY FUNCTIONS IN PYTHON

Theory:

A function is a block of code which only runs when it is called. You can pass data, known as

parameters, into a function. A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword:

 Example

my_function(): print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

 Example

def my_function(): print("Hello from a function") my_function()

Parameters

Information can be passed to functions as parameter. Parameters are specified after the function

name, inside the parentheses. You can add as many parameters as you want, just separate them

with a comma.The following example has a function with one parameter (fname). When the

function is called, we pass along a first name, which is used inside the function to print the full

name:

 Example

def my_function(fname): print(fname + " Refsnes")

my_function("Emil") my_function("Tobias")

my_function("Linus") Default Parameter

38

Example

Example

Value

The following example shows how to use a default parameter value. If we call the function

without parameter, it uses the default value:

def my_function(country = "Norway"):

print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Passing a List as a Parameter

You can send any data types of parameter to a function (string, number, list, dictionary etc.), and it

will be treated as the same data type inside the function. E.g. if you send a List as a parameter, it

will still be a List when it reaches the function:

def my_function(food): for x in food:

print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

To let a function return a value, use the return statement:

 Example

def my_function(x):

return 5 * x

print(my_function(3)) print(my_function(5))

print(my_function(9)) Recursion

39

Example

Recursion Example

Python also accepts function recursion, which means a defined function can call itself. Recursion

is a common mathematical and programming concept. It means that a function calls itself. This

has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a

function which never terminates, or one that uses excess amounts of memory or processor power.

However, when written correctly recursion can be a very efficient and mathematicallyelegant

approach to programming.

In this example, tri_recursion() is a function that we have defined to call itself ("recurse"). We use

the k variable as the data, which decrements-1) every time we recurse. The recursion ends when

the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find

out is by testing and modifying it.

def tri_recursion(k):

if(k>0):

result = k+tri_recursion(k-

1) print(result)

else: result

= 0

return result

print("\n\nRecursion Example Results") tri_recursion(6)

40

Example

Create a class named MyClass, with a property named x:

Example

Create an object named p1, and print the value of x:

 TO STUDY CLASSES IN PYTHON

Theory:

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods. A

Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

class MyClass:

x = 5

Create Object

Now we can use the class named myClass to create objects:

p1 = MyClass()

print(p1.x)

The init () Function

The examples above are classes and objects in their simplest form, and are not really useful in

real life applications.

To understand the meaning of classes we have to understand the built-in init () function.

All classes have a function called init (), which is always executed when the class is being

initiated.

41

Example

Create a class named Person, use the init () function to assign values for name and age:

Use the init () function to assign values to object properties, or other operations that are

necessary to do when the object is being created:

class Person:

def init (self, name, age):

self.name = name

self.age = age

p1 = Person("John", 36)

print(p1.name) print(p1.age)

Note: The init
()

 function is called automatically every time the class is being used to create

a new object.

42

Experiment 1:

Write instructions to perform each of the steps below

(a) Create a string containing at least five words and store it in a variable.

CODE-

name="Hello my name is Akash Ghadai"

(b) Print out the string.

CODE-
print(name)

OUTPUT-

Hello my name is Akash Ghadai

(c) Convert the string to a list of words using the string split method.

CODE-
 x=name.split()

(d) Sort the list into reverse alphabetical order using some of the list methods (you might need to use

dir(list) or help(list) to find appropriate methods).

CODE-
x.reverse()

(e) Print out the sorted, reversed list of words.

CODE-
print(x)

OUTPUT-

['Ghadai', 'Akash', 'is', 'name', 'my', 'Hello']

43

Experiment 2:

Write a program that determines whether the number is prime.

CODE-
num=int(input("Enter a number."))

if num % 2 ==0:

print("{} is not prime number".format(num))

else:

print("{} is a prime number.".format(num))

OUTPUT-
Enter a number.29

29 is a prime number.

44

Experiment 3:

Find all numbers which are multiple of 17, but not the multiple of 5, between 2000 and 2500?.

CODE-
for num in range(2000,2501):

if(num % 17==0) and (num % 5!=0):

 print("",num)

OUTPUT-

2006

 2023

2057

2074

 2091

 2108

2142

 2159

 2176

 2193

 2227

 2244

 2261

 2278

 2312

 2329

 2346

 2363

 2397

 2414

 2431

 2448

 2482

 2499

45

Experiment 4:

Swap two integer numbers using a temporary variable. Repeat the exercise using the code

format: a, b = b, a. Verify your results in both the cases.

CODE-

 a=20

b=30

print("a={}".format(a))

print("b={}".format(b))

a=a^b

b=b^a

a=a^b

print("a={}".format(a))

print("b={}".format(b))

OUTPUT-

a=20

b=30

a=30

b=20

46

Experiment 5:

Find the largest of n numbers, using a user defined function largest().

CODE-
 def largest(num1,num2):

if num1 > num2 :

 print("{} is largest number".format(num1))

else:

 print("{} is larger number".format(num2))

num1=int(input("Enter num1 value"))

num2=int(input("Enter num2 value"))

largest(num1,num2)

OUTPUT-

 Enter num1 value20

Enter num2 value30

30 is larger number

47

Experiment 6:

Write a function my Reverse () which receives a string as an input and returns the reverse

of the string.

CODE-

def reverse(user_input):

reverse_string=user_input[::-1]

 return reverse_string

user_input=input("Enter your name")

final=reverse(user_input)

print(final)

OUTPUT-

Enter your nameAkash

hsakA

48

Experiment 7:

Check if a given string is palindrome or not.

CODE-
def ispalindrome(string):

 if(string == string[::-1]):

return "The string is a palindrome"

 else:

return"The string is not palindrome"

string=input("Enter a string : ")

print(ispalindrome(string))

OUTPUT-
Enter a string : wow

The string is a palindrome

49

Experiment 8:

WAP to convert Celsius to Fahrenheit.

CODE-

 celsius=int(input("Enter the temperature in celsius : "))

fahrenheit=(1.8 * celsius)+32

print("Temperature in fahrenheit: ",fahrenheit)

OUTPUT-

Enter the temperature in celsius : 10

Temperature in fahrenheit: 50.0

50

Experiment 9:

Find the ASCII value of charades.

CODE-

chr=input("Please enter a character : ")

print("The ASCII value of "+chr+" is",ord(chr))

OUTPUT-

Please enter a character : z

The ASCII value of z is 122

51

EXPERIMENT 10:

WAP for simple calculator.

CODE-

num1=int(input("Enter num1 value : "))

num2=int(input("Enter num2 value : "))

print("Choose one")

operator=int(input("1 = +\n2 = *\n3 = -\n4 = /\n"))

if operator == 1:

result=num1+num2

 print("{} + {} = {}".format(num1,num2,result))

elif operator == 2:

 result=num1*+num2

 print("{} * {} = {}".format(num1,num2,result))

elif operator == 3:

 result=num1-num2

 print("{} - {} = {}".format(num1,num2,result))

elif operator == 4:

 result=num1/num2

 print("{} / {} = {}".format(num1,num2,result))

OUTPUT-

Enter num1 value : 20

Enter num2 value : 30

Choose one

1 = +

2 = *

3 = -

4 = /

2

20 * 30 = 600

