

BRANCH – CSE

DBMS						 Page	2

BASIC CONCEPTS OF DBMS
• Database is a collection of related data and data is a collection

of facts and figures that can be processed to produce
information.

• Mostly data represents recordable facts. Data aids in producing
information, which is based on facts. For example, if we have
data about marks obtained by all students, we can then conclude
about toppers and average marks.

• A database management system consists of interrelated data
and a set of programs to access those data in such a way that it
becomes easier to retrieve, manipulate, and produce required
information efficiently on demand.

• Purpose of Database Systems:

• Traditionally, data was organized in file formats. DBMS was a
new concept then, and all the research was done to make it
overcome the deficiencies in traditional style of data
management. A modern DBMS has the following
characteristics:

∑ Real-world entity: A modern DBMS is more realistic and uses
real-world entities to design its architecture. It uses the behavior
and attributes too. For example, a school database may use
students as an entity and their age as an attribute.

∑ Relation-based tables: DBMS allows entities and relations
among them to be represented in tables which can be handled
easily and efficiently.

∑ Isolation of data and application: A database system is
entirely different than its data. A database is an active entity,

DBMS						 Page	3

whereas data is said to be passive, on which the database
system works and organizes. DBMS also stores metadata,called
data dictionary, which is data about data, to ease its own
process.

∑ Less redundancy: DBMS follows the rules of normalization,
which splits a relation when any of its attributes is having
redundancy in values. Normalization is a mathematically rich
and scientific process that reduces data redundancy.

∑ Consistency: Consistency is a state where every relation in a
database remains consistent. There exist methods and
techniques, which can detect all the attempts of leaving database
in inconsistent state and restricts such updates to be made. A
DBMS can provide greater consistency as compared to earlier
forms of data storing applications like file-processing systems
by providing certain integrity checks before an attempt to update
the data in the databse is made.

• Query Language: DBMS is equipped with query language,
which makes it more efficient to retrieve and manipulate data.
A user can apply as many and as different filtering options as
required to retrieve a set of data. Traditionally it was not
possible where file-processing system was used.

• Multiuser and Concurrent Access: DBMS supports multi-user
environment and allows more than one user to access and
manipulate data in parallel or simultaneously. Though there are
restrictions on transactions when users attempt to handle the
same data item, but users are always unaware of them.

• Multiple views: DBMS offers multiple views for different users
giving different levels of abstraction. A person working in Sales
department will have a different view of the database than a
person working in the Production department. This feature

DBMS						 Page	4

enables the users to have a concentrate view of the database
according to their requirements.

• ACID Properties: DBMS follows the concepts of Atomicity,
Consistency, Isolation, and Durability (normally shortened as
ACID). These concepts are applied on transactions, which
manipulate data in a database. ACID properties help the
database stay healthy in multi-transactional environments and
in case of failure.

∑ Security: Features like multiple views offer security to some
extent where users are unable to access data of other users and
departments. DBMS offers methods to impose constraints while
entering data into the database and retrieving the same at a later
stage. DBMS offers many different levels of security features
by imposing security constraints which enables multiple users to
have different views with different features with different
operation restritions as imposed by the DBA. For example, a
user in the Sales department cannot see the data that belongs to
the Purchase department. Additionally, it can also be managed
how much data of the Sales department should be displayed to
the user. These should not be accessed by unauthorized persons.
DBMS can ensure that proper access procedures are followed
including proper authentication schemes for access to DBMS
and additional checks before permitting access to sensitive data.

Shared data:

• A database allows the sharing of data under its control by any
number of application programs or users.

Data independence:

• DBMS supports both physical and logical data independence.
Data independence is advantageous in the database

DBMS						 Page	5

environment since it allows for changes at one level of the
database without affection other levels.

• DataBase Abstraction: For the Database Security aspects, the
Database System does not disclose all the details of the data to
all the types of users rather it hides certain details of how the
data is actually stored and maintained and only discloses that
much of data required by the authentic users efficiently.This
concept is called as DataBase Abstraction.

• DataBase Users:

• A typical DBMS has users with different rights and permissions
who use it for different purposes. Some users retrieve data and
some back it up. The users of a DBMS can be broadly
categorized as follows:

A Administrators: Administrators maintain the DBMS and are
responsible for administrating the database. They are responsible to
look after its usage and by whom it should be used. They create
access profiles for users and apply limitations to maintain isolation
and force security. Administrators also look after DBMS resources
like system license, required tools, and other software and hardware
related maintenance. The functions of DBA include

i. Schema definition

ii. Storage structure and access method definition

iii. Schema and physical organization modification

DBMS						 Page	6

iv. Granting of authorization for data access

v. Routine maintenance

B. Designers: These are made up of people who actually work on the
designing part of the database. They keep a close watch on what data
should be kept and in what format. They identify and design the
whole set of entities, relations, constraints, and views. They are of
two types

1. Application Programmers:-

v Application programmers are computer
professionals who write application programs.

v Application programmers can choose from
many tools like RAD tools, programming
languages, fourth generation languages etc. to
develop user interfaces.

2. Sophisticated Users:-

ÿ Sophisticated users interact with the system
without writing programs. Instead they form
their requests in database query language. They
submit each such query to query processor
whose function is to break down DML
statements into instructions that the storage
manager understands.

ÿ Analysts who submit queries to explore data in
the database fall in this category.

ÿ Specialized users are sophisticated users who write
specialized database applications that do not fit into the
traditional data processing framework.

DBMS						 Page	7

ÿ Among these applications are computer aided design
systems, knowledge base& expert systems that store data
with complex structure(Example:- Graphics and audio
data) and environment modeling systems

C. End Users or Naïve Users: End users are those who actually
reap the benefits of having a DBMS. End users can range from
simple viewers who pay attention to the logs or market rates to
sophisticated users such as business analysts.

Data Definition Language(DDL):

ÿ A database system provides a data definition
language to specify the database schemas.

ÿ For example the following SQL statement defines
the department table.

• Sql> create table department (deptno number(3), dname
varchar2(10));

• Execution of the above DDL statement creates the department
table. In addition it updates a special set of tables called data
dictionary.

ÿ DDL is used to define the database. This definition
includes all the entity sets and their associated
attributes as well as the relationship among the entity
sets. It also includes any constraints that have to be
maintained.

ÿ The DDL used at the external schema is called the
view definition language (VDL) from where the
defining process starts.

ÿ A data dictionary contains metadata. A database
system consults data dictionary before reading or

DBMS						 Page	8

modifying actual data. The schema of a table is an
example of a metadata i.e. data about data.

ÿ We specify the storage structure and access methods
used by the database system by a set of statements in
a special type of DDL called data storage and
definition language (DSDL). These statements
define the implementation details of the database
schemas which are usually hidden from the users.

ÿ The DDL provides facilities to specify such
consistency constraints. The database system checks
these constraints every time the database is updated.

DATA DICTIONARY:-

ÿ Information regarding the structure and usage of data
contained in the database, the metadata maintained
in a data dictionary. The term system catalog also
describes this metadata. The data dictionary which is
a database itself documents the data.

ÿ Each database users can consult the data dictionary
to learn what each piece of data and various
synonyms of data fields mean.

ÿ In an integrated system (i.e. in system where the data
dictionary is a part of the DBMS) the data dictionary
stores information concerning the external,
conceptual and internal levels of the database. It
contains the source of each data field value, the
frequency of its use and an audit trail concerning
updates, including the who and when of each update.

DBMS						 Page	9

DATA MODELS

ÿ Database Schema

ÿ A database schema is the skeleton structure that represents the
logical view of the entire database. It defines how the data is
organized and how the relations among them are associated. It
formulates all the constraints that are to be applied on the data.

ÿ A database schema defines its entities and the relationship
among them. It contains a descriptive detail of the database,
which can be depicted by means of schema diagrams. It’s the
database designers who design the schema to help programmers
understand the database and make it useful.

∑ Physical Database Schema: This schema pertains to the actual
storage of data and its form of storage like files, indices, etc. It
defines how the data will be stored in a secondary storage.

∑ Logical Database Schema: This schema defines all the logical
constraints that need to be applied on the data stored. It defines
tables, views, and integrity constraints.

∑ Data Independence

DBMS						 Page	10

∑ A database system normally contains a lot of data in
addition to users’ data. For example, it stores data
about data, known as metadata, to locate and retrieve
data easily. It is rather difficult to modify or update a
set of metadata once it is stored in the database. But
as a DBMS expands, it needs to change over time to
satisfy the requirements of the users. If the entire
data is dependent, it would become a tedious and
highly complex job. Three levels of abstraction along
with the mappings from internal to conceptual and
from conceptual to external level provide two
distinct levels of data independence: logical data
independence and physical data independence.

∑ Logical data independence indicates that the
conceptual schema can be changed without affecting
the existing external schemas. The change would be
absorbed by the mapping between the external and
conceptual level.

∑ Logical data independence also insulates application
programs from operations such as combining two
records into one or splitting an existing record into
two or more records.

∑ Logical data independence is achieved by providing
the external level or user view of the database. The
application programs or users see the database as
described by their respective external views.

∑ Physical data independence is achieved by the
presence of the internal level of the database and the
mapping or transformation from conceptual level of
database to internal level.

DBMS						 Page	11

∑ The physical data independence criterion requires
that the conceptual level does not specify storage
structures or the access methods (indexing, hashing
etc) used to retrieve the data from the physical
storage medium.

∑ Another aspect of data independence allows different
interpretation of the same data. The storage of data
is in bits and may change from EBCDIC to ASCII
coding.

• Metadata itself follows a layered architecture, so that when we
change data at one layer, it does not affect the data at another
level. This data is independent but mapped to each other.

• Logical Data Independence

• Logical data is data about database, that is, it stores information
about how data is managed inside. For example, a table
(relation) stored in the database and all its constraints applied
on that relation.

• Logical data independence is a kind of mechanism, which
liberalizes itself from actual data stored on the disk. If we do
some changes on table format, it should not change the data
residing on the disk.

DBMS						 Page	12

• Physical Data Independence

• All the schemas are logical, and the actual data is stored in bit
format on the disk. Physical data independence is the power to
change the physical data without impacting the schema or
logical data.

• For example, in case we want to change or upgrade the storage
system itself — suppose we want to replace hard-disks with
SSD — it should not have any impact on the logical data or
schemas.

• ER MODEL BASIC CONCEPTS:

• The ER model defines the conceptual view of a database. It
works around real- world entities and the associations among
them. At view level, the ER model is considered a good option
for designing databases.

• Entity

• An entity can be a real-world object, either animate or
inanimate, that can be easily identifiable. For example, in a
school database, students, teachers, classes, and courses offered
can be considered as entities. All these entities have some
attributes or properties that give them their identity.

• An entity set is a collection of similar types of entities. An entity
set may contain entities with attribute sharing similar values.
For example, a Students set may contain all the students of a
school; likewise a Teachers set may contain all the teachers of a
school from all faculties. Entity sets need not be disjoint.

• Attributes

DBMS						 Page	13

• Entities are represented by means of their properties called
attributes. All attributes have values. For example, a student
entity may have name, class, and age as attributes.

• There exists a domain or range of values that can be assigned to
attributes. For example, a student's name cannot be a numeric
value. It has to be alphabetic. A student's age cannot be
negative, etc.

• Types of Attributes

∑ Simple attribute: Simple attributes are atomic values, which
cannot be divided further. For example, a student's phone
number is an atomic value of 10 digits.

∑ Composite attribute: Composite attributes are made of more
than one simple attribute. For example, a student's complete
name may have first_name and last_name.

∑ Derived attribute: Derived attributes are the attributes that do
not exist in the physical database, but their values are derived
from other attributes present in the database. For example,
average_salary in a department should not be saved directly in
the database, instead it can be derived. For another example,
age can be derived from data_of_birth.

∑ Single-value attribute: Single-value attributes contain single
value. For example: Social_Security_Number.

∑ Multi-value attribute: Multi-value attributes may contain more
than one values. For example, a person can have more than one
phone number, email_address, etc.

• These attribute types can come together in a way like:

∑ simple single-valued attributes

DBMS						 Page	14

∑ simple multi-valued attributes

∑ composite single-valued attributes

∑ composite multi-valued attributes

• Entity-Set and Keys

• Key is an attribute or collection of attributes that uniquely
identifies an entity among entity set.

• For example, the roll_number of a student makes him/her
identifiable among students.

• Super Key: A set of attributes (one or more) that collectively
identifies an entity in an entity set.

∑ Candidate Key: A minimal super key is called a candidate key.
An entity set may have more than one candidate key.

∑ Primary Key: A primary key is one of the candidate keys
chosen by the database designer to uniquely identify the entity
set.

• Relationship

• The association among entities is called a relationship. For
example, an employee works_at a department, a student
enrolls in a course. Here, Works_at and Enrolls are called
relationships.

• Relationship Set

• A set of relationships of similar type is called a relationship set.
Like entities, a relationship too can have attributes. These
attributes are called descriptive attributes.

• Degree of Relationship

DBMS						 Page	15

• The number of participating entities in a relationship defines the
degree of the relationship.

∑ Binary = degree 2

∑ Ternary = degree 3

∑ n-ary = degree n

• Mapping Cardinalities:

• Cardinality defines the number of entities in one entity set,
which can be associated with the number of entities of other set
via relationship set.

∑ One-to-one: One entity from entity set A can be associated with
at most one entity of entity set B and vice versa.

• One-to-many: One entity from entity set A can be associated
with more than one entities of entity set B, however an entity
from entity set B can be associated with at most one entity.

• Many-to-one: More than one entities from entity set A can be
associated with at most one entity of entity set B, however an
entity from entity set B can be associated with more than one
entity from entity set A.

DBMS						 Page	16

• Many-to-many: One entity from A can be associated with more
than one entity from B and vice versa.

• ER DIAGRAM : Let us now learn how the ER Model is
represented by means of an ER diagram. Any object, for
example, entities, attributes of an entity, relationship sets, and
attributes of relationship sets, can be represented with the help
of an ER diagram.

• Entity

• Entities are represented by means of rectangles. Rectangles are
named with the entity set they represent.

• Attributes

• Attributes are the properties of entities. Attributes are
represented by means of ellipses. Every ellipse represents one
attribute and is directly connected to its entity (rectangle).

DBMS						 Page	17

If the attributes are composite, they are further divided in a tree
like structure. Every node is then connected to its attribute. That
is, composite attributes are represented by ellipses that are
connected with an ellipse.

Multivalued attributes are depicted by double ellipse.

Derived attributes are depicted by dashed ellipse

• Relationship

• Relationships are represented by diamond-shaped box. Name of
the relationship is written inside the diamond-box. All the
entities (rectangles) participating in a relationship are connected
to it by a line.

• Binary Relationship and Cardinality

DBMS						 Page	18

• A relationship where two entities are participating is called a
binary relationship. Cardinality is the number of instance of
an entity from a relation that can be associated with the relation.

∑ One-to-one: When only one instance of an entity is associated
with the relationship, it is marked as '1:1'. The following image
reflects that only one instance of each entity should be
associated with the relationship. It depicts one-to-one
relationship.

• One-to-many: When more than one instance of an entity is
associated with a relationship, it is marked as '1:N'. The
following image reflects that only one instance of entity on the
left and more than one instance of an entity on the right can be
associated with the relationship. It depicts one- to-many
relationship.

Many-to-one: When more than one instance of entity is
associated with the relationship, it is marked as 'N:1'. The
following image reflects that more than one instance of an

DBMS						 Page	19

entity on the left and only one instance of an entity on the right
can be associated with the relationship. It depicts many-to-one
relationship.

Many-to-many: The following image reflects that more than
one instance of an entity on the left and more than one instance
of an entity on the right can be associated with the relationship.
It depicts many-to-many relationship.

ÿ NETWORK DATA MODEL:

ÿ The network data model was formalized in the late 1960’s
by the Database Task Group of Conference on data system
languages (DBTG/CODASYL). Hence it is also known as
DBTG model.

ÿ The network model uses two different data structures to
represent the database entities and relationship between the
entities named record type and set type. A record type is used
to represent an entity type. It is made up of a number of data
items that represents the attributes of an entity.

DBMS						 Page	20

ÿ A set type is used to represent a directed relationship
between two record types, the so called owner record type
and the member record type.

ÿ The set type like the record type is named and specifies that
there is a one to many relationship (1:M) between the owner
and member record types. The set type can have more than one
record type as its member, but only one record type is allowed
to be the owner in a given set type.

ÿ A database could have one or more occurrences of each of
its record types and set types. An occurrence of a set type
consists of an occurrence of the owner record type and any
number of occurrences of each of its member record type. A
record type can’t be a member of two distinct occurrences
of the same type.

ÿ To avoid the confusion inherent in the use of the word ‘set’
to describe the mechanism for showing relationship in the
network model, the other terms suggested are co set, fan set,
owner coupled set, CODASYL set, DBTG set etc.

ÿ Bachman introduced a graphical means called a data
structure diagram to denote the logical relationship implied
by the set. Here a labeled rectangle represents the
corresponding entity or record type. An arrow that connects
two labeled rectangles represents a set type. The arrow
direction is from owner record type to member record type.

ÿ In the network model, the relationships as well as the navigation
through the database are predefined at database creation time.

DBMS						 Page	21

HIERARCHICAL DATA MODEL:-

ÿ A tree may be defined as a set of nodes such that there is one
specially designated node called root node and the remaining
nodes are partitioned into disjoint sets, each of which in turn is a
tree, the sub trees of the root. If the relative order of the sub
trees is significant the tree is an ordered tree.

ÿ In a hierarchical database the data is organized in a hierarchical
or ordered tree structure and the database is a collection of such
disjoint trees (sometimes referred to as forests or spanning
trees). The nodes of the tree represent record types. Each tree
effectively represents a root record type and all its dependent
record types. If we define the root record type at level 0, then
the level of its dependent record types can be defined at level 1.
The dependents of the record types at level 1 are said to be at
level 2 and so on.

ÿ An occurrence of a hierarchical tree type consists of one
occurrence of the root record type along with zero or more
occurrences of its dependent sub tree types. Each dependent sub
tree is in turn, hierarchical and consists of a record type as its
root node.

ÿ In a hierarchical model no dependent record can occur without
its parent record occurrence. Furthermore no dependent record
occurrence may be connected to more than one parent record
occurrence.

ÿ A hierarchical model can represent a one to many relationships
between two entities where the two are respectively parent and
child. However to represent many to many relationship requires
duplication of one of the record types corresponding to one of
the entities involved in this relationship. Note that such

DBMS						 Page	22

duplications lead to inconsistencies when only one copy of a
duplicate record is updated.

ÿ RELATIONAL DATA MODEL: Relational data model is the
primary data model, which is used widely around the world for
data storage and processing. This model is simple and it has all
the properties and capabilities required to process data with
storage efficiency.

ÿ Characteristics:

ÿ Tables: In relational data model, relations are saved in the
format of Tables. This format stores the relation among entities.
A table has rows and columns, where rows represent records
and columns represent the attributes.

ÿ Tuple: A single row of a table, which contains a single record
for that relation is called a tuple.

ÿ Relation instance: A finite set of tuples in the relational
database system represents relation instance. Relation instances
do not have duplicate tuples.

ÿ Relation schema: A relation schema describes the relation
name (table name), attributes, and their names.

ÿ Relation key: Each row has one or more attributes, known as
relation key, which can identify the row in the relation (table)
uniquely.

• Attribute domain: Every attribute has some predefined value
scope, known as attribute domain.

• Constraints

• Every relation has some conditions that must hold for it to be a
valid relation. These conditions are called Relational Integrity
Constraints. There are three main integrity constraints:

DBMS						 Page	23

∑ Key constraints

∑ Domain constraints

∑ Referential integrity constraints

• Key Constraints

• There must be at least one minimal subset of attributes in the
relation, which can identify a tuple uniquely. This minimal
subset of attributes is called key for that relation. If there are
more than one such minimal subsets, these are called candidate
keys.

• Key constraints force that:

∑ in a relation with a key attribute, no two tuples can have
identical values for key attributes.

∑ a key attribute cannot have NULL values.

• Key constraints are also referred to as Entity Integrity
Constraints.

• Domain Constraints

• Attributes have specific values in real-world scenario. For
example, age can only be a positive integer. The same
constraints have been tried to employ on the attributes of a
relation. Every attribute is bound to have a specific range of
values. For example, age cannot be less than zero and telephone
numbers cannot contain a digit outside 0-9.

• Referential Integrity Constraints

• Referential integrity constraints work on the concept of Foreign
Keys. A foreign key is a key attribute of a relation that can be
referred in other relation.

DBMS						 Page	24

• Referential integrity constraint states that if a relation refers to a
key attribute of a different or same relation, then that key
element must exist.

DBMS						 Page	25

RELATIONAL DATABASE

CODD’S RULES:

• Dr Edgar F. Codd, after his extensive research on the Relational
Model of database systems, came up with twelve rules of his
own, which according to him, a database must obey in order to
be regarded as a true relational database.

• These rules can be applied on any database system that manages
stored data using only its relational capabilities. This is a
foundation rule, which acts as a base for all the other rules.

Rule 1: Information Rule

The data stored in a database, may it be user data or metadata,
must be a value of some table cell. Everything in a database
must be stored in a table format.

Rule 2: Guaranteed Access Rule

Every single data element (value) is guaranteed to be accessible
logically with a combination of table-name, primary-key (row
value), and attribute-name (column value). No other means,
such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL Values

The NULL values in a database must be given a systematic and
uniform treatment. This is a very important rule because a
NULL can be interpreted as one the following: data is missing,
data is not known, or data is not applicable.

Rule 4: Active Online Catalog

The structure description of the entire database must be stored in
an online catalog, known as data dictionary, which can be
accessed by authorized users. Users can use the same query

DBMS						 Page	26

language to access the catalog which they use to access the
database itself.

Rule 5: Comprehensive Data Sub-Language Rule

A database can only be accessed using a language having linear
syntax that supports data definition, data manipulation, and
transaction management operations. This language can be used
directly or by means of some application. If the database allows
access to data without any help of this language, then it is
considered as a violation.

Rule 6: View Updating Rule

All the views of a database, which can theoretically be updated,
must also be updatable by the system.

Rule 7: High-Level Insert, Update, and Delete Rule

The database must support high-level insertion, updation, and
deletion. This must not be limited to a single row, that is, it
must also support union, intersection and minus operations to
yield sets of data records.

Rule 8: Physical Data Independence

The data stored in a database must be independent of the
applications that access the database. Any change in the
physical structure of a database must not have any impact on
how the data is being accessed by external applications.

Rule 9: Logical Data Independence

The logical data in a database must be independent of its user’s
view (application). Any change in logical data must not affect
the applications using it. For example, if two tables are merged
or one is split into two different tables, there should be no

DBMS						 Page	27

impact or change on the user application. This is one of the
most difficult rule to apply.

Rule 10: Integrity Independence

A database must be independent of the application that uses it.
All its integrity constraints can be independently modified
without the need of any change in the application. This rule
makes a database independent of the front-end application and
its interface.

Rule 11: Distribution Independence

The end-user must not be able to see that the data is distributed
over various locations. Users should always get the impression
that the data is located at one site only. This rule has been
regarded as the foundation of distributed database systems.

Rule 12: Non-Subversion Rule

If a system has an interface that provides access to low-level
records, then the interface must not be able to subvert the
system and bypass security and integrity constraints.

• RELATIONAL ALGEBRA: Relational database systems are
expected to be equipped with a query language that can assist
its users to query the database instances. There are two kinds of
query languages: relational algebra and relational calculus.

• Relational Algebra

• Relational algebra is a procedural query language, which takes
instances of relations as input and yields instances of relations
as output. It uses operators to perform queries. An operator can
be either unary or binary. They accept relations as their input
and yield relations as their output. Relational algebra is

DBMS						 Page	28

performed recursively on a relation and intermediate results are
also considered relations.

• The fundamental operations of relational algebra are as follows:

∑ Select or restrict

∑ Project

∑ Natural join

∑ Divide

∑ Union

∑ Set difference

∑ Cartesian product

∑ Rename

∑ Set Intersection

∑ Select Operation (σ)

∑ It selects tuples that satisfy the given predicate from a relation.

∑ Notation: σp(r)

∑ Where σ stands for selection predicate and r stands for relation.
p is prepositional logic formula which may use connectors like
and, or, and not. These terms may use relational operators like:
=, ≠, ≥, <, >, ≤.

∑ For example:σsubject="database"(Books)

∑ Output: Selects tuples from books where subject is 'database'

σsubject="database" and price="450"(Books)

DBMS						 Page	29

Output: Selects tuples from books where subject is 'database'
and 'price' is 450.

σsubject="database" and price < "450" or year > "2010"(Books)

Output: Selects tuples from books where subject is 'database'
and 'price' is 450 or those books published after 2010.

• Project Operation (∏)

• It projects column(s) that satisfy a given predicate.

• Notation: ∏A1, A2, An (r)

• Where A1, A2, An are attribute names of relation r.

• Duplicate rows are automatically eliminated, as relation is a set.
For example:

∏subject, author (Books)

Selects and projects columns named as subject and author from
the relation Books.

∑ Natural join: Returns a relation consisting of all possible tuples
that are a combination of two tuples ,one from each of the two
specified relations such that the two tuples contributing to any
given relation have a common value for the common attributes
of the two relations.

∑ Divide: It takes two relations , one binary and the other unary
and returns a relation consisting of all values of one attribute of
the binary relation that match all values in the unary relation.

DBMS						 Page	30

• Union Operation (∪)

• It performs binary union between two given relations and is
defined as:

r ∪ s = { t | t ∈ r or t ∈ s}

• Where r and s are either database relations or relation result set
(temporary relation).

• For a union operation to be valid, the following conditions must
hold:

∑ r and s must have the same number of attributes.

∑ Attribute domains must be compatible.

∑ Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)

Output: Projects the names of the authors who have either
written a book or an article or both.

The following illustrates the syntax of the Oracle UNION
operator:

SQL>SELECT column_list FROM T1 UNION SELECT
column_list FROM T2;
For Example: The following statement uses the UNION operator
to build a list of contacts from the employees and contacts tables:

DBMS						 Page	31

SQL> SELECT first_name,last_name,email FROM contacts
UNION SELECT first_name, last_name, email FROM
employees;

• Set intersection: It performs binary intersection between two
given relations and is defined as:

r n s = { t | t ∈ r and t ∈ s}

• Where r and s are either database relations or relation result set
(temporary relation).

• For a intersection operation to be valid, the following conditions
must hold:

∑ r and s must have the same number of attributes.

∑ Attribute domains must be compatible.

The following illustrates the syntax of the Oracle INTERSECT
operator:

SQL>SELECT column_list FROM T1 INTERSECT SELECT
column_list FROM T2;

The following statement uses the INTERSECT operator to get the
last names used by people in both contacts and employees tables:

DBMS						 Page	32

SQL> SELECT last_name FROM contacts INTERSECT SELECT
last_name FROM employees ORDER BY last_name;

• Set Difference (−)

• The result of set difference operation is tuples, which are present
in one relation but are not in the second relation. The two
relations must be type compatible i,e they must have identical
attributes defined on the same domains.

• Notation: r − s

• Finds all the tuples that are present in r but not in s.

∏author(Books) − ∏author(Articles)

• Output: Provides the name of authors who have written books
but not articles.

The following illustrates the syntax of the Oracle MINUS
operator:

SQL>SELECT column_list_1 FROM T1 MINUS
SELECT column_list_2 FROM T2;

For Example: The following statement returns distinct last
names from the query to the left of the MINUS operator which are
not also found in the right query.

SQL> SELECT last_name FROM contacts MINUS
SELECT last_name FROM employees

DBMS						 Page	33

ORDER BY last_name;

• Cartesian Product (Χ)

• Combines information of two different relations into one.

• Notation: r Χ s

• Where r and s are relations and their output will be defined as:

r Χ s = { q t | q ∈ r and t ∈ s}

∏author = ‘ucpes'(Books Χ Articles)

• Output: Yields a relation, which shows all the books and
articles written by ucpes.

• Rename Operation (ρ)

• The results of relational algebra are also relations but without
any name. The rename operation allows us to rename the output
relation. ‘rename’ operation is denoted with small Greek letter
rho ρ.

• Notation: ρ x (E)

• Where the result of expression E is saved with name of x.

DBMS						 Page	34

NORMALISATION IN RELATIONAL SYSTEMS

• Functional Dependency

• Functional dependency (FD) is a set of constraints between two
attributes in a relation. Functional dependency says that if two
tuples have same values for attributes A1, A2,..., An, then those two tuples must

have to have same values for attributes B1, B2, ..., Bn.

• Functional dependency is represented by an arrow sign (→) that
is, X→Y, where X functionally determines Y. The left-hand
side attributes determine the values of attributes on the right-
hand side.

• Armstrong's Axioms

• If F is a set of functional dependencies then the closure of F,
denoted as F+, is the set of all functional dependencies logically
implied by F. Armstrong's Axioms are a set of rules that, when
applied repeatedly, generates a closure of functional
dependencies.

• Reflexive rule: If alpha is a set of attributes and beta
is_subset_of alpha, then alpha holds beta.

• Augmentation rule: If a → b holds and y is attribute set, then
ay → by also holds. That is adding attributes in dependencies,
does not change the basic dependencies.

• Transitivity rule: Same as transitive rule in algebra, if a → b
holds and b

• → c holds, then a → c also holds. a → b is called as a
functionally that determines b.

• Normalization

DBMS						 Page	35

• If a database design is not perfect, it may contain anomalies,
which are like a bad dream for any database administrator.
Managing a database with anomalies is next to impossible.

• Update anomalies: If data items are scattered and are not linked
to each other properly, then it could lead to strange situations.
For example, when we try to update one data item having its
copies scattered over several places, a few instances get
updated properly while a few others are left with old values.
Such instances leave the database in an inconsistent state.

• Deletion anomalies: We tried to delete a record, but parts of it
was left undeleted because of unawareness, the data is also
saved somewhere else.

• Insert anomalies: We tried to insert data in a record that does
not exist at all.

• Normalization is a method to remove all these anomalies and
bring the database to a consistent state.

• First Normal Form

• First Normal Form is defined in the definition of relations
(tables) itself. This rule defines that all the attributes in a
relation must have atomic domains. The values in an atomic
domain are indivisible units.

•

DBMS						 Page	36

• Each attribute must contain only a single value from its
predefined domain.

• Second Normal Form

• Before we learn about the second normal form, we need to
understand the following:

∑ Prime attribute: An attribute, which is a part of the prime-key,
is known as a prime attribute.

∑ Non-prime attribute: An attribute, which is not a part of the
prime-key, is said to be a non-prime attribute.

• A Relation is said to be in second normal form if and only if it is
in first normal form and every non-prime attribute should be
fully functionally (irreducibly) dependent on prime key
attribute. That is, if X → A holds, then there should not be any
proper subset Y of X for which Y → A also holds true.

DBMS						 Page	37

• We decomposed the relation in to two relations as depicted in
the above picture. So there exists no partial dependency.

• Third Normal Form

• For a relation to be in Third Normal Form, it must be in Second
Normal form and No non-prime attribute is transitively
dependent on the prime key attribute.

• We find that in the above Student_detail relation, Stu_ID is the
key and only prime key attribute. We find that City can be
identified by Stu_ID as well as Zip itself. Neither Zip is a
superkey nor is City a prime attribute. Additionally,

• Stu_ID → Zip → City, so there exists transitive dependency.

• To bring this relation into third normal form, we decompose the
relation into two relations as follows:

DBMS						 Page	38

• Boyce-Codd Normal Form

• Boyce-Codd Normal Form (BCNF) is an extension of Third
Normal Form on strict terms. BCNF states that -

∑ For any non-trivial functional dependency, X → A, X must be a
candidate key. i,e a relation is in BCNF if and only if the only
determinants are the candidate keys.

• In the above image, Stu_ID is the candidate key in the relation
Student_Detail and Zip is the candidate key in the relation
ZipCodes. So,

• Stu_ID → Stu_Name and Stu_ID → Zip in the relation
Student_Detail

• and

• Zip → City in the relation ZipCodes.

• Which confirms that both the relations are in BCNF because in
both the cases the only determinants are the candidate keys.

DBMS						 Page	39

STRUCTURED QUERY LANGUAGE

QUERY LANGUAGE:-

ÿ A query language is a language in which a user
requests information from the database. These
languages are usually on a level higher than that of a
standard programming language.

ÿ Query languages can be categorized as either
procedural or non-procedural. In a procedural
language the user instructs the system to perform a
sequence of operations on the database to compute
the desired result. In a non-procedural language the
user describes the desired information without
giving a specific procedure for obtaining that
information.

QUERIES IN SQL:-

• Table:-

ÿ A table is a database object that holds user data. The
simplest analogy is to think of a table as a spread
sheet

ÿ The columns of a table are associated with a specific
data type.

ÿ Oracle ensures that only data which is identical to the
data type of the column will be stored within the
column.

• Data type:

1. Character (size):

DBMS						 Page	40

• This data type is used to store character string of fixed length.
The size in bracket determines the number of characters the
shell can hold. Maximum size is 255 characters.

• Varchar(size)/ Varchar2(size):

• This data type is used to store variable length alpha numeric
data. Maximum size is 2000 characters.

• Date: Date data type is used to represent date and time. The
standard format is DD-MMM-YY.

• Number:

• The number data type is used to store numbers (fixed or
floating) number of any magnitude may be stored up to 38 digit
of decision. Maximum size is 9.99 * 10124 . The precision P
determines the maximum length of data where as the scale S
determines the number of places to right of the decimal.

• Long:

• This data type is used to store variable length character,
strings up to 2GB. Long data can be used to store arrays of
binary data in ASCII format.

• RAW/ LONG RAW:

• The raw data type is used to store binary data such as picture
or image. Raw data type can have maximum 255 byte and
maximum size of long raw is up to 2GB.

• SQL is a programming language for Relational Databases. It is
designed over relational algebra and tuple relational calculus.
SQL comes as a package with all major distributions of
RDBMS.

DBMS						 Page	41

• SQL comprises both data definition ,data manipulation
,transaction control and data control languages. Using the data
definition language of SQL, one can design and modify database
schema, data manipulation language allows SQL to store and
retrieve data from database, transaction control language is used
to control the transactions to update the database temporarily or
permanently by using rollback and commit and data control
languages like grant and revoke to give permission and
withdraw permissions to access the database.

• Data Definition Language(DDL)

• SQL uses the following set of commands to define database
schema:

• CREATE

• Creates new databases, tables, and views in RDBMS.

• For example:

To create a new table in Oracle Database, we use the CREATE
TABLE statement. The following illustrates the basic syntax of
the CREATE TABLE statement:
SQL>CREATE TABLE table_name (

column_1 data_type column_constraint,
column_2 data_type column_constraint,
...
table_constraint

);
In this syntax:

∑ First, specify the table name in the CREATE TABLE clause.

∑ Second, list all columns of the table within the parentheses. In
case a table has multiple columns, you need to separate them by
commas (,). A column definition includes the column name

DBMS						 Page	42

followed by its data type e.g., NUMBER, VARCHAR2, and a
column constraint such as NOT NULL, primary key, check.

∑ Third, add table constraints if applicable e.g., primary key,
foreign key, check.

Oracle CREATE TABLE statement example

The following example shows how to create a new table named
persons :
SQL>CREATE TABLE persons(person_id NUMBER,
first_name VARCHAR2(50) NOT NULL,last_name
VARCHAR2(50) NOT NULL, PRIMARY KEY(person_id));
In this example, the persons table has three columns: person_id,
first_name, and last_name. The data type of the person_id
column is NUMBER. The first_name column has data type
VARCHAR2 with the maximum length is 50. It means that a
first name whose length is greater than 50 can not be inserted
into the first_name column. Besides, the NOT NULL column
constraint prevents the first_name column to have NULL values.
The last_name column has the same characteristics as the
first_name column.The PRIMARY KEY clause specifies the
person_id column as the primary key column which is used for
identifying the unique row in the persons table.

• ALTER

To modify the structure of an existing table, we use the ALTER
TABLE statement. The following illustrates the syntax:
SQL>ALTER TABLE table_name action;
In this statement:

∑ First, we must specify the table name which is to be modified.

∑ Second, the action that we want to perform is to be specified
after the table name.

https://www.oracletutorial.com/oracle-basics/oracle-data-types/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-varchar2/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/

DBMS						 Page	43

The ALTER TABLE statement allows us to:

∑ Add one or more columns

∑ Modify column definition

∑ Drop one or more columns

Let’s see some examples to understand how such actions work.

To add a new column to a table, we use the following syntax:

SQL>ALTER TABLE table_name ADD column_name type
constraint;
For example, the following statement adds a new column named
birthdate to the persons table:
SQL>ALTER TABLE persons ADD birthdate DATE NOT
NULL;
To view the persons table and see that the birthdate column is
appended at the end of the column list:
SQL>DESC persons;

Name Null Type
---------- -------- ------------
PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE NOT NULL DATE
To add multiple columns to a table at the same time, we place
the new columns inside the parenthesis as follows:

SQL>ALTER TABLE table_name
ADD (

column_name type constraint,
column_name type constraint,
...

);

DBMS						 Page	44

See the following example:

SQL>ALTER TABLE persons
ADD (

phone VARCHAR(20),
email VARCHAR(100)

);
In this example, the statement added two new columns named
phone and email to the persons table.
DESC persons

Name Null Type
---------- -------- -------------
PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE NOT NULL DATE
PHONE VARCHAR2(20)
EMAIL VARCHAR2(100)

To modify the attributes of a column, you use the following
syntax:

SQL>ALTER TABLE table_name MODIFY column_name
type constraint;
For example, the following statement changes the birthdate
column to a null-able column:
SQL>ALTER TABLE persons MODIFY birthdate DATE
NULL;
Let’s verify the persons table structure again:
DESC persons

Name Null Type
PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)

DBMS						 Page	45

LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE DATE
PHONE VARCHAR2(20)
EMAIL VARCHAR2(100)
As it can be seen, the birthdate became null-able.
To modify multiple columns, you use the following syntax:

SQL>ALTER TABLE table_name
MODIFY (column_1 type constraint,

column_2 type constraint,
...);

For example, the following statement changes the phone and
email column to NOT NULLcolumns and extends the length of
the email column to 255 characters:
SQL>ALTER TABLE persons MODIFY(

phone VARCHAR2(20) NOT NULL,
email VARCHAR2(255) NOT NULL
);
Verify the persons table structure again:
DESC persons;

Name Null Type
---------- -------- -------------
PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE DATE
PHONE NOT NULL VARCHAR2(20)
EMAIL NOT NULL VARCHAR2(255)
Oracle ALTER TABLE DROP COLUMN example

To remove an existing column from a table, you use the
following syntax:

SQL>ALTER TABLE table_name DROP COLUMN
column_name;

DBMS						 Page	46

This statement deletes the column from the table structure and
also the data stored in that column.

The following example removes the birthdate column from the
persons table:
SQL>ALTER TABLE persons DROP COLUMN birthdate;
Viewing the persons table structure again, we will find that the
birthdate column has been removed:
DESC persons;

Name Null Type
---------- -------- -------------
PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
PHONE NOT NULL VARCHAR2(20)
EMAIL NOT NULL VARCHAR2(255)

• DROP : Drops views, tables, and databases from RDBMS.

• Syntax: SQL>Drop table table name;

• For example:

SQL>DROP TABLE persons;

• Data Manipulation Language(DML)

• SQL is equipped with data manipulation language (DML). DML
modifies the database instance by inserting, updating, and
deleting its data. DML is responsible for all forms data
modification in a database. SQL contains the following set of
commands in its DML section:

• SELECT/FROM/WHERE

• INSERT INTO/VALUES

DBMS						 Page	47

• UPDATE/SET/WHERE

• DELETE FROM/WHERE

• These basic constructs allow database programmers and users to
enter data and information into the database and retrieve
efficiently using a number of filter options.

• SELECT/FROM/WHERE

• SELECT

• This is one of the fundamental query command of SQL. It is
similar to the restrict operation of relational algebra. It selects
the attributes based on the condition described by WHERE
clause.

• FROM

• This clause takes a relation name as an argument from which
attributes are to be selected. In case more than one relation
names are given, this clause corresponds to Cartesian product.

• WHERE

• This clause defines predicate or conditions, which must match in
order to qualify the attributes to be projected.

• Syntax:

SQL>SELECT
column_1,
column_2,
...

FROM
• table_name WHERE condition;

• For example:

• SQL>Select author_name From book_author Where age > 50;

DBMS						 Page	48

• This command will display the names of the
authors from the relation book_author whose age is
greater than 50.

• INSERT INTO/VALUES

• This command is used for inserting values into the rows of a
table (relation).

• Syntax: SQL>INSERT INTO table (column1 [, column2,
column3 ...]) VALUES (value1 [, value2, value3 ...]);

• For example:

• SQL>INSERT INTO ucpes (Author, Subject) VALUES
("anonymous", "computers");

• UPDATE/SET/WHERE

• This command is used for updating or modifying the values of
columns in a table (relation).

• Syntax:

• SQL>UPDATE table_name SET column_name = value [,
column_name = value ...] [WHERE condition];

• For example:

• SQL>UPDATE ucpes SET Author="webmaster" WHERE
Author="anonymous";

• DELETE/FROM/WHERE

• This command is used for removing one or more rows from a
table (relation).

• Syntax:

• SQL>DELETE FROM table_name [WHERE condition];

DBMS						 Page	49

• SQL>DELETE FROM ucpes WHERE Author="unknown";

• JOINS:

• It gives us all the possible tuples that are paired together. But it
might not be feasible for us in certain cases to take a Cartesian
product where we encounter huge relations with thousands of
tuples having a considerable large number of attributes.

• Join is a combination of a Cartesian product followed by a
selection process. A Join operation pairs two tuples from
different relations, if and only if a given join condition is
satisfied.

• We will briefly describe various join types in the following
sections.

• Theta (θ) Join

• Theta join combines tuples from different relations provided
they satisfy the theta condition. The join condition is denoted
by the symbol θ.

• Notation:

• R1 ⋈θ R2

• R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,..

,Bn) such that the attributes don’t have anything in common, that

is, R1 ∩ R2 = Φ.

• Theta join can use all kinds of comparison operators.

• Equijoin

• When Theta join uses only equality comparison operator, it is
said to be equijoin.

• Natural Join (⋈)

DBMS						 Page	50

• Natural join does not use any comparison operator. It does not
concatenate the way a Cartesian product does. We can perform
a Natural Join only if there is at least one common attribute that
exists between two relations. In addition, the attributes must
have the same name and domain.

• Natural join acts on those matching attributes where the
values of attributes in both the relations are same.

•

• Outer Joins

• Theta Join, Equijoin, and Natural Join are called inner joins. An
inner join includes only those tuples with matching attributes
and the rest are discarded in the resulting relation. Therefore,
we need to use outer joins to include all the tuples from the
participating relations in the resulting relation. There are three
kinds of outer joins: left outer join, right outer join, and full
outer join.

• Left Outer Join :

• All the tuples from the Left relation, R, are included in the
resulting relation. If there are tuples in R without any matching
tuple in the Right relation S, then the S-attributes of the
resulting relation are made NULL.

•
ON A.Key = B.Key;

• Right Outer Join: All the tuples from the Right relation, S, are
included in the resulting relation. If there are tuples in S without
any matching tuple in R, then the R-attributes of resulting
relation are made NULL.

DBMS						 Page	51

•

•

• Full Outer Join: All the tuples from both participating relations
are included in the resulting relation. If there are no matching
tuples for both relations, their respective unmatched attributes
are made NULL.

SQL>

DBMS						 Page	52

TRANSACTION PROCESSING CONCEPTS

• TRANSACTION: Transaction can be defined as a a logical unit
of work consisting of a group of tasks . A single task is the
minimum processing unit which cannot be divided further.

• Let’s take an example of a simple transaction. Suppose a bank
employee transfers Rs 500 from A's account to B's account.
This very simple and small transaction involves several low-
level tasks.

• A’s Account

• Open_Account(A)

• Old_Balance = A.balance

• New_Balance = Old_Balance - 500

• A.balance = New_Balance

• Close_Account(A)

• B’s Account:

• Open_Account(B)

• Old_Balance = B.balance

• New_Balance = Old_Balance + 500

• B.balance = New_Balance

• Close_Account(B)

• ACID Properties:

• A transaction is a very small unit of a program and it may
contain several low- level tasks. A transaction in a database
system must maintain Atomicity, Consistency, Isolation, and

DBMS						 Page	53

Durability — commonly known as ACID properties — in order
to ensure accuracy, completeness, and data integrity.

• Atomicity: This property states that a transaction must be
treated as an atomic unit, that is, either all of its operations are
executed or none. There must be no state in a database where a
transaction is left partially completed. States should be defined
either before the execution of the transaction or after the
execution/abortion/failure of the transaction.

• Consistency: The database must remain in a consistent state
after any transaction. No transaction should have any adverse
effect on the data residing in the database. If the database was
in a consistent state before the execution of a transaction, it must
remain consistent after the execution of the transaction as well.

• Durability: The database should be durable enough to hold all
its latest updates even if the system fails or restarts. If a
transaction updates a chunk of data in a database and commits,
then the database will hold the modified data. If a transaction
commits but the system fails before the data could be written on
to the disk, then that data will be updated once the system
springs back into action.

• Isolation: In a database system where more than one transaction
are being executed simultaneously and in parallel, the property
of isolation states that all the transactions will be carried out
and executed as if it is the only transaction in the system. No
transaction will affect the existence of any other transaction.

• States of transaction:-

• A transaction can be considered to be an atomic operation by the
user but in reality it goes through a number of states during its
life time.

DBMS						 Page	54

• Active: In this state, the transaction is being executed. This is
the initial state of every transaction.

• Partially Committed: When a transaction executes its final
operation, it is said to be in a partially committed state.

• Failed: A transaction is said to be in a failed state if any of the
checks made by the database recovery system fails. A failed
transaction can no longer proceed further.

• Aborted: If any of the checks fails and the transaction has
reached a failed state, then the recovery manager rolls back all
its write operations on the database to bring the database back
to its original state where it was prior to the execution of the
transaction. Transactions in this state are called aborted. The
database recovery module can select one of the two operations
after a transaction aborts:

• Re-start the transaction

• Kill the transaction

• Committed: If a transaction executes all its operations
successfully, it is said to be committed. All its effects are now
permanently established on the database system.

• A transaction can end in three possible ways. It can end after a
commit operation (a successful termination). It can detect an
error during its processing and decide to abort itself by
performing a rollback operation (a suicidal termination). The

DBMS						 Page	55

DBMS or operating system can force it to be aborted for one
reason or another (a murderous termination).

• Serializability

• When multiple transactions are being executed by the operating
system in a multiprogramming environment, there are
possibilities that instructions of one transaction are interleaved
with some other transaction.

• Schedule: A chronological execution sequence of a transaction
is called a schedule. A schedule can have many transactions in
it, each comprising of a number of instructions/tasks.

• Serial Schedule: It is a schedule in which transactions are
aligned in such a way that one transaction is executed first.
When the first transaction completes its cycle, then the next
transaction is executed. Transactions are ordered one after the
other. This type of schedule is called a serial schedule, as
transactions are executed in a serial manner.

• In a multi-transaction environment, serial schedules are
considered as a benchmark. The execution sequence of an
instruction in a transaction cannot be changed, but two
transactions can have their instructions executed in a random
fashion. This execution does no harm if two transactions are
mutually independent and working on different segments of
data; but in case these two transactions are working on the same
data, then the results may vary. This ever-varying result may
bring the database to an inconsistent state.

• To resolve this problem, we allow parallel execution of a
transaction schedule, if its transactions are either serializable or
have some equivalence relation among them.

• Equivalence Schedules

DBMS						 Page	56

• An equivalence schedule can be of the following types:

• Result Equivalence

• If two schedules produce the same result after execution, they
are said to be result equivalent. They may yield the same result
for some value and different results for another set of values.
That's why this equivalence is not generally considered
significant.

• View Equivalence

• Two schedules would be view equivalence if the transactions in
both the schedules perform similar actions in a similar manner.

• For example:

• If T reads the initial data in S1, then it also reads the initial data
in S2.

• If T reads the value written by J in S1, then it also reads the
value written by J in S2.

• If T performs the final write on the data value in S1, then it also
performs the final write on the data value in S2.

• Conflict Equivalence

• Two schedules would be conflicting if they have the following
properties:

• Both belong to separate transactions.

• Both accesses the same data item.

• At least one of them is "write" operation.

• Two schedules having multiple transactions with conflicting
operations are said to be conflict equivalent if and only if:

DBMS						 Page	57

• Both the schedules contain the same set of Transactions.

• The order of conflicting pairs of operation is maintained in both
the schedules.

• Note: View equivalent schedules are view serializable and
conflict equivalent schedules are conflict serializable. All
conflict serializable schedules are view serializable too.

• Data Recovery:

• Crash Recovery

• DBMS is a highly complex system with hundreds of
transactions being executed every second. The durability and
robustness of a DBMS depends on its complex architecture and
its underlying hardware and system software. If it fails or
crashes amid transactions, it is expected that the system would
follow some sort of algorithm or techniques to recover lost data.

• Failure Classification

• To see where the problem has occurred, we generalize a failure
into various categories, as follows:

• Transaction Failure

• A transaction has to abort when it fails to execute or when it
reaches a point from where it can’t go any further. This is called
transaction failure where only a few transactions or processes
are hurt.

• Reasons for a transaction failure could be:

• Logical errors: Where a transaction cannot complete because it
has some code error or any internal error condition.

• System errors: Where the database system itself terminates an
active transaction because the DBMS is not able to execute it,

DBMS						 Page	58

or it has to stop because of some system condition. For
example, in case of deadlock or resource unavailability, the
system aborts an active transaction.

• System Crash

• There are problems – external to the system – that may cause the
system to stop abruptly and cause the system to crash. For
example, interruptions in power supply may cause the failure of
underlying hardware or software failure.

• Examples may include operating system errors.

• Disk Failure

• In early days of technology evolution, it was a common problem
where hard-disk drives or storage drives used to fail frequently.

• Disk failures include formation of bad sectors, unreachability to
the disk, disk head crash or any other failure, which destroys all
or a part of disk storage.

• Storage Structure

• We have already described the storage system. In brief, the
storage structure can be divided into two categories:

• Volatile storage: As the name suggests, a volatile storage
cannot survive system crashes. Volatile storage devices are
placed very close to the CPU; normally they are embedded onto
the chipset itself. For example, main memory and cache
memory are examples of volatile storage. They are fast but can
store only a small amount of information.

• Non-volatile storage: These memories are made to survive
system crashes. They are huge in data storage capacity, but
slower in accessibility. Examples may include hard-disks,

DBMS						 Page	59

magnetic tapes, flash memory, and non-volatile (battery backed
up) RAM.

• Recovery and Atomicity

• When a system crashes, it may have several transactions being
executed and various files opened for them to modify the data
items. Transactions are made of various operations, which are
atomic in nature. But according to ACID properties of DBMS,
atomicity of transactions as a whole must be maintained, that is,
either all the operations are executed or none.

• When a DBMS recovers from a crash, it should maintain the
following:

• It should check the states of all the transactions, which were
being executed.

• A transaction may be in the middle of some operation; the
DBMS must ensure the atomicity of the transaction in this case.

• It should check whether the transaction can be completed now
or it needs to be rolled back.

• No transactions would be allowed to leave the DBMS in an
inconsistent state.

• There are two types of techniques, which can help a DBMS in
recovering as well as maintaining the atomicity of a transaction:

• Maintaining the logs of each transaction, and writing them onto
some stable storage before actually modifying the database.

• Maintaining shadow paging, where the changes are done on a
volatile memory, and later, the actual database is updated.

• Log-based Recovery

DBMS						 Page	60

• Log is a sequence of records, which maintains the records of
actions performed by a transaction. It is important that the logs
are written prior to the actual modification and stored on a
stable storage media, which is failsafe.

• Log-based recovery works as follows:

• The log file is kept on a stable storage media.

• When a transaction enters the system and starts execution, it
writes a log about it.

• <Tn, Start>

• When the transaction modifies an item X, it write logs as
follows:

• <Tn, X, V1, V2>

• It reads Tn has changed the value of X, from V1 to V2.

• When the transaction finishes, it logs:

• <Tn, commit>

• The database can be modified using two approaches:

• Deferred database modification: All logs are written on to the
stable storage and the database is updated when a transaction
commits.

• Immediate database modification: Each log follows an actual
database modification. That is, the database is modified
immediately after every operation.

• Recovery with Concurrent Transactions

• When more than one transaction are being executed in parallel,
the logs are interleaved. At the time of recovery, it would
become hard for the recovery system to backtrack all logs, and

DBMS						 Page	61

then start recovering. To ease this situation, most modern
DBMS use the concept of 'checkpoints'.

• Checkpoint

• Keeping and maintaining logs in real time and in real
environment may fill out all the memory space available in the
system. As time passes, the log file may grow too big to be
handled at all. Checkpoint is a mechanism where all the
previous logs are removed from the system and stored
permanently in a storage disk. Checkpoint declares a point
before which the DBMS was in consistent state, and all the
transactions were committed.

• Recovery

• When a system with concurrent transactions crashes and
recovers, it behaves in the following manner:

• [Recovery with concurrent transactions]

• The recovery system reads the logs backwards from the end to
the last checkpoint.

• It maintains two lists, an undo-list and a redo-list.

• If the recovery system sees a log with <Tn, Start> and <Tn, Commit> or just

<Tn, Commit>, it puts the transaction in the redo-list.

• If the recovery system sees a log with <Tn, Start> but no commit or abort log

found, it puts the transaction in the undo-list.

DBMS						 Page	62

• All the transactions in the undo-list are then undone and their
logs are removed. All the transactions in the redo-list and their
previous logs are removed and then redone before saving their
logs.

DBMS						 Page	63

CONCURRENCY CONTROL CONCEPTS

• In a multiprogramming environment where multiple transactions
can be executed simultaneously, it is highly important to
control the concurrency of transactions. We have concurrency
control protocols to ensure atomicity, isolation, and
serializability of concurrent transactions. Concurrency control
protocols can be broadly divided into two categories:

∑ Lock-based protocols

∑ Timestamp-based protocols

• Lock-based Protocols

• Database systems equipped with lock-based protocols use a
mechanism by which any transaction cannot read or write data
until it acquires an appropriate lock on it. Locks are of two
kinds:

• Binary Locks: A lock on a data item can be in two states; it is
either locked or unlocked.

• Shared/exclusive Locks This type of locking mechanism
differentiates the locks based on their uses. If a lock is acquired
on a data item to perform a write operation, it is an exclusive
lock. Allowing more than one transaction to write on the same
data item would lead the database into an inconsistent state.
Read locks are shared because no data value is being changed.

• There are four types of lock protocols available:

• Simplistic Lock Protocol

• Simplistic lock-based protocols allow transactions to obtain a
lock on every object before a 'write' operation is performed.
Transactions may unlock the data item after completing the
‘write’ operation.

DBMS						 Page	64

• Pre-claiming Lock Protocol

• Pre-claiming protocols evaluate their operations and create a list
of data items on which they need locks. Before initiating an
execution, the transaction requests the system for all the locks it
needs beforehand. If all the locks are granted, the transaction
executes and releases all the locks when all its operations are
over. If all the locks are not granted, the transaction rolls back
and waits until all the locks are granted.

• Two-Phase Locking – 2PL

• This locking protocol divides the execution phase of a
transaction into three parts. In the first part, when the
transaction starts executing, it seeks permission for the locks it
requires. The second part is where the transaction acquires all
the locks. As soon as the transaction releases its first lock, the
third phase starts. In this phase, the transaction cannot demand
any new locks; it only releases the acquired locks.

• Two-phase locking has two phases, one is growing, where all
the locks are being acquired by the transaction; and the second

DBMS						 Page	65

phase is shrinking, where the locks held by the transaction are
being released.

• To claim an exclusive (write) lock, a transaction must first
acquire a shared (read) lock and then upgrade it to an exclusive
lock.

• Strict Two-Phase Locking

• The first phase of Strict-2PL is same as 2PL. After acquiring all
the locks in the first phase, the transaction continues to execute
normally. But in contrast to 2PL, Strict-2PL does not release a
lock after using it. Strict-2PL holds all the locks until the
commit point and releases all the locks at a time.

• Timestamp-based Protocols

• The most commonly used concurrency protocol is the timestamp
based protocol. This protocol uses either system time or logical
counter as a timestamp.

• Lock-based protocols manage the order between the conflicting
pairs among transactions at the time of execution, whereas
timestamp-based protocols start working as soon as a
transaction is created.

• Every transaction has a timestamp associated with it, and the
ordering is determined by the age of the transaction. A
transaction created at 0002 clock time would be older than all
other transactions that come after it. For example, any
transaction 'y' entering the system at 0004 is two seconds
younger and the priority would be given to the older one.

DBMS						 Page	66

• In addition, every data item is given the latest read and write-
timestamp. This lets the system know when the last ‘read and
write’ operation was performed on the data item.

• Timestamp Ordering Protocol:

The timestamp-ordering protocol ensures serializability
among transactions in their conflicting read and write
operations. This is the responsibility of the protocol system that
the conflicting pair of tasks should be executed according to the
timestamp values of the transactions.

∑ The timestamp of transaction Ti is denoted as TS(Ti).

∑ Read timestamp of data-item X is denoted by R-timestamp(X).

∑ Write timestamp of data-item X is denoted by W-timestamp(X).
Timestamp ordering protocol works as follows:

∑ If a transaction Ti issues a read(X) operation:

∑ If TS(Ti) < W-timestamp(X)

∑ Operation rejected.

∑ If TS(Ti) >= W-timestamp(X)

∑ Operation executed.

∑ All data-item timestamps updated.

∑ If a transaction Ti issues a write(X) operation:

∑ If TS(Ti) < R-timestamp(X)

∑ Operation rejected. If TS(Ti) < W-timestamp(X)

∑ Operation rejected and Ti rolled back.

DBMS						 Page	67

∑ Otherwise, operation executed.

∑ Thomas' Write Rule

∑ This rule states if TS(Ti) < W-timestamp(X), then the operation
is rejected and Ti is rolled back.

∑ Timestampordering rules can be modified to make
the schedule view serializable.

∑ Instead of making Ti rolled back, the 'write' operation itself is
ignored.

∑ LIVE LOCK:-

∑ A live lock is similar to a deadlock, except that the states of the
processes involved in the live lock constantly change with
regard to one another, none progressing. This term was defined
formally at some time during the 1970s ‒ in Babich's 1979
article on program correctness. Live lock is a special case of
resource starvation; the general definition only states that a
specific process is not progressing.

∑ A real-world example of live lock occurs when two people meet
in a narrow corridor, and each tries to be polite by moving aside
to let the other pass, but they end up swaying from side to side
without making any progress because they both repeatedly move
the same way at the same time.

∑ Live lock is a risk with some algorithms that detect and recover
from deadlock. If more than one process takes action, the
deadlock detection algorithm can be repeatedly triggered. This
can be avoided by ensuring that only one process (chosen
arbitrarily or by priority) takes action.

∑ DEAD LOCK: In a multi-process system, deadlock is an
unwanted situation that arises in a shared resource environment,

DBMS						 Page	68

where a process indefinitely waits for a resource that is held by
another process.

∑ For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a

resource X to complete its task. Resource X is held by T1, and T1 is waiting

for a resource Y, which is held by T2. T2 is waiting for resource Z, which is

held by T0. Thus, all the processes wait for each other to release

resources. In this situation, none of the processes can finish
their task. This situation is known as a deadlock.

∑ Deadlocks are not healthy for a system. In case a system is stuck
in a deadlock, the transactions involved in the deadlock are
either rolled back or restarted.

∑ Deadlock is a common problem in multiprocessing systems,
parallel computing and distributed systems, where software and
hardware locks are used to handle shared resources and
implement process synchronization

∑ Deadlock Prevention

∑ To prevent any deadlock situation in the system, the DBMS
aggressively inspects all the operations, where transactions are
about to execute. The DBMS inspects the operations and
analyzes if they can create a deadlock situation. If it finds that a
deadlock situation might occur, then that transaction is never
allowed to be executed.

∑ There are deadlock prevention schemes that use timestamp
ordering mechanism of transactions in order to predetermine a
deadlock situation.

DBMS						 Page	69

∑ Wait-Die Scheme

∑ In this scheme, if a transaction requests to lock a resource (data
item), which is already held with a conflicting lock by another
transaction, then one of the two possibilities may occur:

∑ If TS(Ti) < TS(Tj) — that is Ti, which is requesting a conflicting lock, is

older than Tj — then Ti is allowed to wait until the data-item is available.

∑ If TS(Ti) > TS(tj) — that is Ti is younger than Tj — then Ti dies. Ti is

restarted later with a random delay but with the same timestamp.

∑ This scheme allows the older transaction to wait but kills the
younger one.

∑ Wound-Wait Scheme

∑ In this scheme, if a transaction requests to lock a resource (data
item), which is already held with conflicting lock by another
transaction, one of the two possibilities may occur:

∑ If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back — that is Ti wounds

Tj. Tj is restarted later with a random delay but with the same timestamp.

∑ If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is available.

This scheme allows the younger transaction to wait; but when an

older scheme allows the younger transaction to wait; but when
an older transaction requests an item held by a younger one,
the older transaction forces the younger one to abort and
release the item.

∑ In both the cases, the transaction that enters the system at a later
stage is aborted.

∑ Deadlock Avoidance

DBMS						 Page	70

∑ Aborting a transaction is not always a practical approach.
Instead, deadlock avoidance mechanisms can be used to detect
any deadlock situation in advance. Methods like "wait-for
graph" are available but they are suitable for only those systems
where transactions are lightweight having fewer instances of
resource. In a bulky system, deadlock prevention techniques
may work well.

∑ Wait-for Graph

∑ This is a simple method available to track if any deadlock
situation may arise. For each transaction entering into the

system, a node is created. When a transaction Ti requests for a lock

on an item, say X, which is held by some other transaction Tj, a directed edge

is created from Ti to Tj. If Tj releases item X, the edge between them is

dropped and Ti locks the data item.

∑ The system maintains this wait-for graph for every transaction
waiting for some data items held by others. The system keeps
checking if there's any cycle in the graph.

DBMS						 Page	71

∑ SERIALIZABILITY:-

∑ Serializability is a property of a transaction schedule (history).
It relates to the isolation property of a database transaction.

∑ Serializability of a schedule means equivalence to a serial
schedule (i.e., sequential with no transaction overlap in time)
with the same transactions. It is the major criterion for the
correctness of concurrent transactions' schedule, and thus
supported in all general purpose database systems.

∑ The rationale behind serializability is the following:

∑ If each transaction is correct by itself i.e. meets certain integrity
conditions, then a schedule that comprises any serial execution
of these transactions is correct (its transactions still meet their
conditions): "Serial" means that transactions do not overlap in
time and cannot interfere with each other, i.e. complete
isolation between each other exists. Any order of the

DBMS						 Page	72

transactions is legitimate, if no dependencies among them exist,
which is assumed.

∑ As a result a schedule that comprises any execution (not
necessarily serial) that is equivalent to any serial execution of
these transactions is correct.

∑ Schedules that are not serializable are likely to generate
erroneous outcomes. Examples are with transactions that debit
and credit accounts with money: If the related schedules are not
serializable, then the total sum of money may not be preserved.
Money could disappear, or be generated from nowhere. It does
not happen if serializability is maintained.

∑ If any specific order between some transactions is requested by
an application, then it is enforced independently of the
underlying serializability mechanisms. These mechanisms are
typically indifferent to any specific order, and generate some
unpredictable partial order that is typically compatible with
multiple serial orders of these transactions.

∑ Two major types of serializability exist: view-serializability, and
conflict-serializability. View-serializability matches the general
definition of serializability given above. Conflict-serializability
is a broad special case, i.e., any schedule that is conflict-
serializable is also view-serializable, but not necessarily the
opposite. Conflict-serializability is widely utilized because it is
easier to determine and covers a substantial portion of the view-
serializable schedules.

∑ View-serializability of a schedule is defined by equivalence to
a serial schedule (no overlapping transactions) with the same
transactions, such that respective transactions in the two
schedules read and write the same data values ("view" the same
data values).

DBMS						 Page	73

∑ Conflict-serializability is defined by equivalence to a serial
schedule (no overlapping transactions) with the same
transactions, such that both schedules have the same sets of
respective chronologically ordered pairs of conflicting
operations (same precedence relations of respective conflicting
operations).

DBMS						 Page	74

SECURITY AND INTEGRITY

∑ AUTHORIZATION:

∑ Authorization is the culmination of the administrative policies of
the organization, expressed as a set of rules that can be used to
determine which user has what type of access of which portion
of database. The person who is in charge of specifying the
authorization is usually called the authorizer. The authorizer is
distinct from DBA and usually the person who owns the data.

∑ The authorization is usually maintained in the form of a table
called an access matrix. The access matrix contains rows called
subject and columns called objects. The entry in the matrix at
the position corresponding to the intersection of a row and
column indicate the type of access that the subject has with
respect to the object.

∑ Object:

∑ An object is something that needs protection and one of the first
steps in the authorization process is to select the objects to be
used for security enforcement. Example: - a unit of data, views
etc.

∑ The objects in the access matrix represent content independent
access control. However to enforce content dependent access
control, some structure for conditions or access predicates are
incorporated in the access matrix.

∑ Views as objects:

∑ Views or sub schemes can be used to enforce security. A user is
allowed to access only that portion of the database defined by
the user’s view. A number of users may share a view. However
the user may create new views based on the views allowed. The

DBMS						 Page	75

advantage of this approach is that the number of objects
accessible to a class of users and the entry for it in the
authorization table is reduced to one per view. This reduces the
size of authorization matrix. The disadvantage is that the entire
classes of users have the same access rights.

∑ Granularity:

∑ This is used for security enforcement. This could be a file, a
record or a data item. The smaller the protected object, the finer
the degree of specifying protection. However the finer
granularity increases the size of the authorization matrix and
overhead in enforcing security.

∑ Subject:

∑ A subject is an active element in the security mechanism. It
operates on objects. A subject is a user who is given some
rights to access a data object. We can also treat a class of users
or an application program as a subject.

∑ Access Types:

∑ The access allowed to a user could be for data manipulation or
control. The manipulation operations are read, insert, delete,
and update. The control operations are add, drop, alter and
propagate.

∑ Read: Allows reading only the object.

∑ Insert: Allows inserting new occurrences of the object type.
Insert access type requires that the subject has the read access
as well. However it may not allow the modification of the
existing data.

∑ Delete: Allows deleting an existing occurrence of the object
type.

DBMS						 Page	76

∑ Update: Allows the subject to change the value of the
occurrence of the object. An update authorization may not
include a delete authorization as well.

∑ Add: Allows the subject to add new object types such as new
relations, record and set types or record types and hierarchies.

∑ Drop: Allows the subject to drop or delete existing object types
from the database.

∑ Alter: Allows the subject to add new data items or attributes to
an existing record type or relation. It also allows the subject to
drop existing data items or attributes from existing record types
or relations.

∑ Propagate access control: This is an additional right that if this
subject is allowed to propagate the right over the object to other
subjects.

∑ VIEWS:

∑ Sometimes for security and other concerns, it is undesirable to
have all users to see the entire relation. It would also be
beneficial if we would create useful relations for different
groups of users, rather than have them all manipulate the base
relations. Any relation that is not part of the physical database,
i.e., a virtual relation is made available to the users is known as
a view.

∑ It is possible to create views in SQL. A relation view is virtual
since no corresponding physical relation exists. A view
represents a different perspective of a base relation or relations.

∑ The result of a query operation on one or more base relations is
a relation. Therefore if a user needs a particular view based on
the base relations, it can be defined using a query expression.

DBMS						 Page	77

To be useful, we assign the view a name and relate it to the
query expression.

∑ SQL>Create view <view name> as <query expression>;

For Example: SQL> CREATE VIEW salesman AS
SELECT * FROM employees WHERE
job_title = 'Sales Representative';
The view returns only employees whose job titles are Sales
Representative.

To drop a view, we use the following statement:

SQL> DROP VIEW view name;

To drop the salesman view, we use the following statement:

SQL> DROP VIEW salesman;

A view is a relation (virtual rather than base) and can be used in
query an expression that is queries can be written using views as
a relation.

∑ Views generally are not stored, since the data in the base
relations may change.

∑ The definition of a view in a create view statement is stored in
the system catalog. Having been defined, it can be used as if the
view really represents a real relation. However such a virtual
relation defined by a view is recomputed whenever a query
refers to it.

∑ Views or sub schemes are used to enforce security. A user is
allowed access to only that portion of the database defined by
the user’s view.

DBMS						 Page	78

∑ A number of users may share a view. However, the users may
create new views based on the views allowed.

∑ The advantage of this approach is that the number of objects
accessible to a class of users and the entry for it in the
authorization matrix is reduced one per view. This reduces the
size of authorization matrix. The disadvantage is that the entire
class of users has the same access rights.

∑ We can customize all aspects of a view, including:

∑ The name of the view

∑ The fields that appear in the view

∑ The column title for each field in the view

∑ The order of the fields in the view

∑ The width of columns in the view, as well as the overall width
of the view

∑ The set of records that appear in the view (Filtering)

∑ The order in which records are displayed in the view (Sorting &
Grouping)

SECURITY CONSTRAINTS:

∑ Security in a database involves both policies and mechanisms to
protect the data and ensure that it is not accessed, altered or
deleted without proper authorization.

∑ There are four levels of defense or security constraints are
generally recognized for database security: human factors,
physical security, administrative control, and security and
integrity mechanisms built into operating system and DBMS.

∑ Human Factors:

DBMS						 Page	79

∑ At the outermost level are the human factors, which encompass
the ethical, legal and social environments. An organization
depends on these to provide a certain degree of protection. Thus
it is unethical for a person to obtain something by stealth and it
is illegal to forcibly enter the premises of an organization and
hence the computing facility containing the database.

∑ Many countries have enacted legislation that makes it a crime to
obtain unauthorized dial in access into computing system of an
organization. Privacy laws also make it illegal to use
information for purposes other than that for which it was
collected.

∑ An organization usually performs some type of clearance
procedure for personnel who are going to be dealing with
sensitive information, including that contained in a database.
This clearance procedure can be a very informal one, in the form
of the reliability and trust that an employee has earned in the
eyes of management or the clearance procedure could be a
formal one.

∑ The authorizer is responsible for granting proper database access
authorization to the user community. Assignment of
authorization to a wrong class of users can result in possibly
security violations.

∑ Physical Security:

∑ Physical security mechanisms include appropriate locks and
keys and entry logs to computing facility and terminals.

∑ Security and physical storage devices (magnetic disk packs etc.)
within the organization and when being transmitted from one
location to another must be maintained. Access to the
computing facility must be guarded, since an unauthorized

DBMS						 Page	80

person can make copies of files by bypassing the normal
security mechanism built into the DBMS and the operating
system.

∑ Authorized terminals from which database access is allowed to
have to be physically secure, otherwise unauthorized persons
may be able to glean information from the database using these
terminals.

∑ User identification and passwords have to be kept confidential;
otherwise unauthorized users can borrow the identification and
password of a more privileged user and compromise the
database.

∑ Administrative Controls:-

∑ Administrative controls are the security and access control
policies that determine what information will be accessible to
what class of users and the type of access that will be allowed
to this class.

∑ DBMS and Operating System Mechanisms:

∑ The proper mechanisms for the identification and verification of
users. Each user is assigned an account number and a password.
The operating system ensures that access to the system is
denied unless the number and password are valid. In addition to
the DBMS could also require a number and password before
allowing the user to perform any database operations.

∑ The protection of data and programs, both in primary and
secondary memories. This is usually done by the operating
system to avoid direct access to the data in primary memory or
to online files.

DBMS						 Page	81

∑ The DBMS has the following features for providing security and
integrity mechanisms to support concurrency, transaction
management, audit and recovery data logging. In addition the
DBMS provides mechanisms for defining the authorization of
the user community and specifying semantic integrity
constraints and checking.

∑ CRYPTOGRAPHY and ENCRYPTION:

∑ Consider the secure transmission of this message: “AS
KINGFISHERS CATCH FIRE”

∑ One method of transmitting this message is to substitute a
different character of the alphabet for each character in the
message using an encryption key “ELIOT” and encryption
algorithm as follows:

∑ Divide the plain text into blocks of length equal to the length of
the encryption key.

∑ Replace each character of the plain text by an integer 00 to 26 as
blank=00,A=01 …..Z=26.

∑ Repeat step 2 for the encryption key.

∑ For each block of the plain text and encryption key,replace each
character by the sum modulo 27.

∑ Replace each integer coding to its character equivalent to get the
the cipher text.

∑ Using the above encryption algorithm and encryption key , we
get our cipher text as : “FDIZB SSOXL MQTGT HMBRA
ERRFY”

DBMS						 Page	82

} To be effective, a cipher includes a variable as part of the
algorithm. The variable, which is called a key, that makes
a cipher's output unique.

} How does Encryption work?

} At the beginning of the encryption process, the sender must
decide what cipher will best disguise the meaning of the
message and what variable to use as a key to make the encoded
message unique. The most widely used types of ciphers fall into
two categories: symmetric and asymmetric.

} Symmetric ciphers: also referred to as secret key encryption, use
a single key. The key is sometimes referred to as a shared
secret because the sender or computing system doing the
encryption must share the secret key with all entities authorized
to decrypt the message. Symmetric key encryption is usually
much faster than asymmetric encryption. The most widely used
symmetric key cipher is the Advanced Encryption Standard
(AES), which was designed to protect government-classified
information.

} Data Encryption Standard(DES) works by using the same key to
encrypt and decrypt a message, so both the sender and the

DBMS						 Page	83

receiver must know and use the same private key. DES has been
superseded by the more secure AES algorithm.

} Asymmetric ciphers: also known as public key encryption, use
two different -- but logically linked -- keys. This type of
cryptography often uses prime numbers to create keys since it is
computationally difficult to factor large prime numbers and
reverse-engineer the encryption. The Rivest-Shamir-Adleman
(RSA) encryption algorithm is currently the most widely used
public key algorithm. With RSA, the public or the private key
can be used to encrypt a message; whichever key is not used for
encryption becomes the decryption key.

} Today, many cryptographic processes use a symmetric
algorithm to encrypt data and an asymmetric algorithm to
securely exchange the secret key.

} Importance of Encryption:

} Encryption plays an important role in securing many different
types of information technology (IT) assets. It provides the
following:

} Confidentiality encodes the message's content.

} Authentication verifies the origin of a message.

} Integrity proves the contents of a message have not been
changed since it was sent.

} Nonrepudiation prevents senders from denying they sent the
encrypted message.

} Encryption vs. Decryption

} Encryption, which encodes and disguises the message's content,
is performed by the message sender. Decryption, which is the

DBMS						 Page	84

process of decoding an obscured message, is carried out by the
message receiver.

INTEGRITY CONSTRAINTS:

Integrity constraints ensure that any properly authorized
access, alteration, deletion or insertion of the data in the
database does not change the consistency and validity of the
data. Database integrity involves the correctness of data; this
correctness has to be preserved in the presence of concurrent
operations, errors in the users operations and application
programmes and failures in hardware and software. Constraints
are restrictions or rules applied to a database to maintain its
integrity.

TYPES OF INTEGRITY CONSTRAINTS:

1. Check constraint.

2. Entity Integrity Constraint.

3. Referential integrity constraint

1. Check Constraint:The value that each attribute or data item
can be assigned is expressed in the form of data type, a range
of values or a value from a specified set called as Check
constraint. Example: In the relation EMPLOYEE the domain
of the attribute Salary may be in the range of 12000 to
300000 or Mark secured by a student in STUDENT relation
must be less than or equal to the Total mark.

Creating Check constraint syntax

SQL>CREATE TABLE table_name (
...
column_name data_type CHECK (expression),
...

);

DBMS						 Page	85

In this syntax, a check constraint consists of the keyword
CHECK followed by an expression in parentheses. The
expression should always involve the column thus
constrained. Otherwise, the check constraint does not make
any sense.
If we want to assign the check constraint an explicit name,
we use the CONSTRAINT clause below:
CONSTRAINT check_constraint_name
CHECK (expression);
Add Check constraint to a table

To add a check constraint to an existing table, we use the
ALTER TABLE ADD CONSTRAINT statement as follows:
SQL>ALTER TABLE table_name ADD CONSTRAINT
check_constraint_name CHECK(expression);
To drop a check constraint, we use the ALTER TABLE
DROP CONSTRAINT statement as follows:
SQL> ALTER TABLE table_name DROP CONSTRAINT
check_constraint_name;

2. Entity Integrity Constraint:The domain values for any
attribute that forms a primary key of a relation are validated
against the domain constraint, called Entity Integrity Constraint.

It does not to allow null values and redundant values
against a primary key.

Adding a primary key to a table in ORACLE:

To add a primary key constraint to an existing table:
SQL>ALTER TABLE table_name ADD CONSTRAINT
constraint_name PRIMARY KEY (column1, column2, ...);
Example: SQL>ALTER TABLE vendors ADD CONSTRAINT
pk_vendors PRIMARY KEY (vendor_id);
Dropping an Oracle PRIMARY KEY constraint

https://www.oracletutorial.com/oracle-basics/oracle-alter-table/

DBMS						 Page	86

To drop a PRIMARY KEY constraint from a table:
SQL>ALTER TABLE table_name DROP CONSTRAINT
primary_key_constraint_name;
To drop the primary key constraint of the vendors table as
follows:
SQL>ALTER TABLE vendors DROP CONSTRAINT
pk_vendors;

3.Referential integrity constraint:

} The constraint that the relation R2 must not contain any
unmatched foreign key values and it must contain foreign key
values matching to the corresponding(Having the same Domain)
primary key of another relation R1 to which it refers to, is called
as Referentital Integrity Constraint.

} Two constraints while an attempt to update the relations are
made:

} (a) We can not delete the records from relation R1 having the
matching foreign key values in the relation R2.

} (b) We can not insert records into the relation R2 which is not
having a corresponding primary key in the Relation R1.

} For Ex: In the two relations Shipment(SID,PID,QTY) and
Supplier(SID, City,Status), the domain of the SID in Supplier
and SID in Shipment are same and SID in Shipment is the
foreign key referencing to the SID in Supplier .

} Syntax in ORACLE:

SQL>CREATE TABLE child_table (
...
CONSTRAINT fk_name
FOREIGN KEY(col1, col2,...) REFERENCES

parent_table(col1,col2)

DBMS						 Page	87

);

First, to explicitly assign the foreign key constraint a name, we
use the CONSTRAINT clause followed by the name. The
CONSTRAINT clause is optional. If we omit it, Oracle will
assign a system-generated name to the foreign key constraint.

Second, we specify the FOREIGN KEY clause to define one or
more column as a foreign key and parent table with columns to
which the foreign key columns reference.

Unlike the primary key constraint, a table may have more than
one foreign key constraint.

DBMS						 Page	88

MODEL QUESTIONS

Questions Carrying Two Marks Each:

1. Define Data Abstraction.

2. Define Data Independence.

3. Mention the Role of DBA.

4. Define Data Base Management System.

5. What is an entity?

6. What do you mean by an attribute?

7. What is an E-R Diagram?

8. How entities and attributes are represented in an E-R Diagram?

9. What do you mean by a Relation?

10. Point out the different types of relations and how are they
represented in ER Diagrams?

11. Define Selection and Projection Operations in relational algebra.

12. Define Cartesian product Operation.

13. Write down the Importance of Normalization.

14. Define Primary Key.

15. Define Foreign Key.

16. Define Third Normal Form.

17. Define Transaction.

18. Mention the different states of Transactions .

DBMS						 Page	89

19. Mention the various properties of Transactions.

20. Define BCNF.

21. Define Data Dictionary.

22. Define Deadlock.

23.How is Two Phase Locking algorithm used to prevent Deadlock?

24. Mention the different types of failures?

25. Define Entity Integrity Constraint.

26. Define Encryption.

27. Mention the advantages and disadvantages of Hierarchical Data
Model.

28. Define view.

29. Point out the various types of integrity constraints.

30. Differentiate between Rollback and Commit.

31. Define serializability.

32. Define Referential integrity constraint.

33. Define Data Integrity.

34. Mention the different types of Access Types.

35. Write down four DML commands with proper syntax.

DBMS						 Page	90

Questions Carrying Five Marks Each:

1. Discuss the advantages of Database Management Systems.

2. Who are the Various Database users? Explain.

3. Explain different types of Database Languages.

4. Explain briefly the Importance of Data Dictionary.

5. Define Data Independence? Discuss the various types of Data
Independence.

6. What is an Attribute? Describe how are the Various Types of Attributes
represented in an ER-Model.

7. What do you mean by Mapping Constraint? Explain it with Suitable
Examples.

8. What do you mean by Relational Algebra? Explain different types of
Operations used in database with suitable examples.

9. Differentiate between non loss decomposition and lossy decomposition
with proper example.

10.Distinguish between DDL and DML.

11.Discuss the ACID properties of a Transaction.

12.Explain briefly the Different States of a Transaction?

13.Explain the two Phase Locking Concept with suitable example.

14.How Recovery can be done in case of a Database System failure?

15.Discuss the Idea behind Encryption Technique?

16.Discuss the various types of Joins.

DBMS						 Page	91

Questions Carrying Ten Marks Each:-

1. Distinguish between Hierarchical Data Model and Network Data Model.

2. Explain E-R Modelling Technique with suitable examples.

3. What is a Relational data Model? Explain it briefly.

4. Describe the various features of Hierarchical data Model.

5. Explain the Network data model with Example.

6. Discuss the various relational algebra operations with suitable

Examples.

7. Discuss the Second Normal Form with proper example.

8. What is SQL? Write down the various DDL & DML Commands used

with suitable examples.

9. Define Deadlock. How can it be prevented?

10. How can the Database be recovered in case of failures?

11. Discuss the various concurrency control protocols in DBMS.

12. How is the security maintained in a Database?

13. Discuss the advantages and disadvantages of DBMS.

14. Who is DBA? Discuss the various responsibilities of DBA.

15. Explain briefly the different Deadlock prevention and Avoidance
schemes.

DBMS						 Page	92

